New Type Power System and the Integrated Energy

Peafowl Optimization Algorithm Based Bi-Level Multi-Objective Optimal Allocation of Energy Storage Systems in Distribution Network

Expand
  • 1. Faculty of Electric Power Engineering, Kunming University of Science and Technology, Kunming 650500, China
    2. College of Electric Power, South China University of Technology, Guangzhou 510640, China
    3. Guangdong Provincial Key Laboratory of Intelligent Measurement and Advanced Metering of Power Grid, Guangzhou 510640, China

Received date: 2021-09-24

  Online published: 2022-11-03

Abstract

Based on the relation between battery energy storage systems (BESSs) planning and operation, a multi-objective optimal allocation model that takes into account both economic and technical requirements is established, and a bi-level optimization structure is constructed to ensure effective planning and high-efficient operation of BESSs. In the inner layer, a peafowl optimization algorithm (POA) is employed to solve the BESSs charge-discharge operation strategy with the purpose of BESSs operation benefit maximization. In the outer layer, a multi-objective peafowl optimization algorithm (MOPOA) is devised to solve the Pareto solution set of BESSs siting and sizing scheme, which aims at minimizing BESSs cost, as well as voltage fluctuation and load fluctuation in distribution network. Furthermore, a typical scenario set is obtained via the clustering algorithm considering uncertain operating conditions. The simulation is performed based on the extended IEEE-33 bus system. The results show that the proposed algorithm achieves a trade-off between local search and global search, thus obtains a high-quality solution. It can obtain a more widely distributed and uniform Pareto front, which not only achieves the best investment benefit, but also improves voltage quality and power stability.

Cite this article

YANG Bo, WANG Junting, YU Lei, CAO Pulin, SHU Hongchun, YU Tao . Peafowl Optimization Algorithm Based Bi-Level Multi-Objective Optimal Allocation of Energy Storage Systems in Distribution Network[J]. Journal of Shanghai Jiaotong University, 2022 , 56(10) : 1294 -1307 . DOI: 10.16183/j.cnki.jsjtu.2021.371

References

[1] YANG B, WANG J T, CHEN Y X, et al. Optimal sizing and placement of energy storage system in power grids: A state-of-the-art one-stop handbook[J]. Journal of Energy Storage, 2020, 32: 101814.
[2] YANG B, YU L, CHEN Y X, et al. Modelling, applications, and evaluations of optimal sizing and placement of distributed generations: A critical state-of-the-art survey[J]. International Journal of Energy Research, 2021, 45(3): 3615-3642.
[3] 孙立明, 杨博. 蓄电池/超导混合储能系统非线性鲁棒分数阶控制[J]. 电力系统保护与控制, 2020, 48(22): 76-83.
[3] SUN Liming, YANG Bo. Nonlinear robust fractional-order control of battery/SMES hybrid energy storage systems[J]. Power System Protection and Control, 2020, 48(22): 76-83.
[4] YANG B, WANG J B, WANG J T, et al. Robust fractional-order PID control of supercapacitor energy storage systems for distribution network applications: A perturbation compensation based approach[J]. Journal of Cleaner Production, 2021, 279: 123362.
[5] YANG B, WANG J T, ZHANG X S, et al. Control of SMES systems in distribution networks with renewable energy integration: A perturbation estimation approach[J]. Energy, 2020, 202: 117753.
[6] YANG B, WANG J B, ZHANG X S, et al. Applications of battery/supercapacitor hybrid energy storage systems for electric vehicles using perturbation observer based robust control[J]. Journal of Power Sources, 2020, 448: 227444.
[7] 杨博, 俞磊, 王俊婷, 等. 基于自适应蝠鲼觅食优化算法的分布式电源选址定容[J]. 上海交通大学学报, 2021, 55(12): 1673-1688.
[7] YANG Bo, YU Lei, WANG Junting, et al. Optimal sizing and placement of distributed generation based on adaptive manta ray foraging optimization[J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1673-1688.
[8] 颜志敏, 王承民, 郑健, 等. 配电网中蓄电池储能系统的价值评估模型[J]. 电力自动化设备, 2013, 33(2): 57-61.
[8] YAN Zhimin, WANG Chengmin, ZHENG Jian, et al. Value assessment model of battery energy storage system in distribution network[J]. Electric Power Automation Equipment, 2013, 33(2): 57-61.
[9] 苏海锋, 胡梦锦, 梁志瑞. 基于时序特性含储能装置的分布式电源规划[J]. 电力自动化设备, 2016, 36(6): 56-63.
[9] SU Haifeng, HU Mengjin, LIANG Zhirui. Distributed generation & energy storage planning based on timing characteristics[J]. Electric Power Automation Equipment, 2016, 36(6): 56-63.
[10] 章美丹, 宋晓喆, 辛焕海, 等. 计及网损的配电网电池储能站优化运行策略[J]. 电网技术, 2013, 37(8): 2123-2128.
[10] ZHANG Meidan, SONG Xiaozhe, XIN Huanhai, et al. Optimal operation strategy of battery energy storagesystem in distribution networks with consideration of power losses[J]. Power System Technology, 2013, 37(8): 2123-2128.
[11] LI R, WANG W, CHEN Z, et al. Optimal planning of energy storage system in active distribution system based on fuzzy multi-objective bi-level optimization[J]. Journal of Modern Power Systems and Clean Energy, 2018, 6(2): 342-355.
[12] 贾雨龙, 米增强, 刘力卿, 等. 分布式储能系统接入配电网的容量配置和有序布点综合优化方法[J]. 电力自动化设备, 2019, 39(4): 1-7.
[12] JIA Yulong, MI Zengqiang, LIU Liqing, et al. Comprehensive optimization method of capacity configuration and ordered installation for distributed energy storage system accessing distribution network[J]. Electric Power Automation Equipment, 2019, 39(4): 1-7.
[13] 张忠会, 雷大勇, 李俊, 等. 基于自适应ε-支配多目标粒子群算法的含SOP的主动配电网源-网-荷-储双层协同规划模型[J]. 电网技术, 2022, 6, 2199-2209.
[13] ZHANG Zhonghui, LEI Dayong, LI Jun, et al. Source-network-load-storage bi-level collaborative planning model of active distribution network with sop based on adaptive ε-dominating multi-objective particle swarm optimization algorithm[J]. Power System Technology, 2022, 6, 2199-2209.
[14] ABU-MOUTI F S, EL-HAWARY M E. Optimal distributed generation allocation and sizing in distribution systems via artificial bee colony algorithm[J]. IEEE Transactions on Power Delivery, 2011, 26(4): 2090-2101.
[15] 叶鹏, 刘思奇, 关多娇, 等. 基于自适应均衡技术的分布式储能聚合模型及评估方法[J]. 上海交通大学学报, 2021, 55(12): 1689-1699.
[15] YE Peng, LIU Siqi, GUAN Duojiao, et al. An aggregation model and evaluation method of distributed energy storage based on adaptive equalization technology[J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1689-1699.
[16] SABER H, MOEINI-AGHTAIE M, EHSAN M. Developing a multi-objective framework for expansion planning studies of distributed energy storage systems (DESSs)[J]. Energy, 2018, 157: 1079-1089.
[17] 陆立民, 褚国伟, 张涛, 等. 基于改进多目标粒子群算法的微电网储能优化配置[J]. 电力系统保护与控制, 2020, 48(15): 116-124.
[17] LU Limin, CHU Guowei, ZHANG Tao, et al. Optimal configuration of energy storage in a microgrid based on improved multi-objective particle swarm optimization[J]. Power System Protection and Control, 2020, 48(15): 116-124.
[18] 马溪原, 吴耀文, 方华亮, 等. 采用改进细菌觅食算法的风/光/储混合微电网电源优化配置[J]. 中国电机工程学报, 2011, 31(25): 17-25.
[18] MA Xiyuan, WU Yaowen, FANG Hualiang, et al. Optimal sizing of hybrid solar-wind distributed generation in an islanded microgrid using improved bacterial foraging algorithm[J]. Proceedings of the CSEE, 2011, 31(25): 17-25.
[19] 何颖源, 陈永翀, 刘勇, 等. 储能的度电成本和里程成本分析[J]. 电工电能新技术, 2019, 38(9): 1-10.
[19] HE Yingyuan, CHEN Yongchong, LIU Yong, et al. Analysis of cost per kilowatt-hour and cost per mileage for energy storage technologies[J]. Advanced Technology of Electrical Engineering and Energy, 2019, 38(9): 1-10.
[20] 张志义, 余涛, 王德志, 等. 基于集成学习的含电气热商业楼宇群的分时电价求解[J]. 中国电机工程学报, 2019, 39(1): 112-125.
[20] ZHANG Zhiyi, YU Tao, WANG Dezhi, et al. Optimal solution of time-of-use price based on ensemble learning for electricity-gas-heat commercial building[J]. Proceedings of the CSEE, 2019, 39(1): 112-125.
[21] 中华人民共和国国家发展和改革委员会, 国家能源局. 解决弃水弃风弃光问题实施方案[R]. 北京: 中华人民共和国国家发展和改革委员会, 国家能源局, 2017.
[21] National Development and Reform Commission, National Energy Administration. Implementation plan to solve the problem of water, air and light abandonment[R]. Beijing: National Development and Reform Commission, National Energy Administration, 2017.
[22] 林君豪, 张焰, 陈思, 等. 考虑可控负荷影响的主动配电系统分布式电源优化配置[J]. 电力自动化设备, 2016, 36(9): 46-53.
[22] LIN Junhao, ZHANG Yan, CHEN Si, et al. Optimal DG allocation considering effect of controllable load for active distribution system[J]. Electric Power Automation Equipment, 2016, 36(9): 46-53.
[23] GANDOMI A H, YANG X S, ALAVI A H. Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems[J]. Engineering with Computers, 2013, 29(1): 17-35.
[24] YANG B, WANG J B, ZHANG X S, et al. Applications of battery/supercapacitor hybrid energy storage systems for electric vehicles using perturbation observer based robust control[J]. Journal of Power Sources, 2020, 448: 227444.
[25] 杨蕾, 吴琛, 黄伟, 等. 含高比例风光新能源电网的多目标无功优化算法[J]. 电力建设, 2020, 41(7): 100-109.
[25] YANG Lei, WU Chen, HUANG Wei, et al. Pareto-based multi-objective reactive power optimization for power grid with high-penetration wind and solar renewable energies[J]. Electric Power Construction, 2020, 41(7): 100-109.
[26] FARAMARZI A, HEIDARINEJAD M, STEPHENS B, et al. Equilibrium optimizer: A novel optimization algorithm[J]. Knowledge-Based Systems, 2020, 191: 105190.
[27] 伍忠东, 高新波, 谢维信. 基于核方法的模糊聚类算法[J]. 西安电子科技大学学报, 2004, 31(4): 533-537.
[27] WU Zhongdong, GAO Xinbo, XIE Weixin. A study of a new fuzzy clustering algorithm based on the kernel method[J]. Journal of Xidian University, 2004, 31(4): 533-537.
[28] GOSWAMI S K, BASU S K. A new algorithm for the reconfiguration of distribution feeders for loss minimization[J]. IEEE Transactions on Power Delivery, 1992, 7(3): 1484-1491.
[29] RAN F, TIMOTHY R, ROBERT M. Utility-scale photovoltaics-plus-energy storage system costs benchmark[R]. USA: National Renewable Energy Laboratory, 2018.
[30] MIRJALILI S, SAREMI S, MIRJALILI S M, et al. Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion optimization[J]. Expert Systems with Applications, 2016, 47: 106-119.
[31] DURILLO J J, NEBRO A J, COELLO COELLO C A, et al. A comparative study of the effect of parameter scalability in multi-objective metaheuristics[C]//2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence). Hong Kong, China: IEEE, 2008: 1893-1900.
[32] 王丽萍, 邱飞岳. 复杂多目标问题的优化方法及应用[M]. 北京: 科学出版社, 2018.
[32] WANG Liping, QIU Feiyue. Complex multi-objective optimization and it’s applications[M]. Beijing: Science Press, 2018.
Outlines

/