Electronic Information and Electrical Engineering

Evaluation of Thermal Insulation Performance of EB-PVD YSZ Thermal Barrier Coatings by Phosphorescence Lifetime Online Measurement

Expand
  • 1. School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    2. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    3. College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
    4. AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China

Received date: 2022-07-01

  Revised date: 2022-08-12

  Accepted date: 2022-08-31

  Online published: 2022-10-24

Abstract

Precise measurement of the thermal insulation performance of thermal barrier coatings (TBCs) under the thermal gradient environment is important for the design and development of TBCs. A phosphorescent sensor TBC which contains an Eu doped yttria-stabilized zirconia (YSZ:Eu) surface layer, a YSZ intermediate layer, and a YSZ:Dy bottom layer, is designed and prepared by electron beam physical vapor deposition (EB-PVD). Based on the thermal quenching characteristics of phosphorescence signal, the surface temperature of the YSZ coating and the interface temperature of the bond-coat/YSZ layer are measured online in a temperature gradient environment, and the real thermal insulation effect of the EB-PVD YSZ thermal barrier coating is evaluated. The results show that the EB-PVD YSZ coating with a thickness of 113 μm can achieve an average temperature decrease of 66.5 ℃. The average thermal conductivity of the coating is (0.87±0.15) W/(m·K) in the temperature range between 400 and 700 ℃, which is slightly lower than the value (0.95±0.02) W/(m·K) obtained by using the traditional laser flash method. The above results validate the reliability of online phosphorescence temperature measurement technique, and provide an effective method to monitor the thermal insulation effect of TBCs in real time.

Cite this article

LIU Zhenghong, YU Yali, CHENG Weilun, LI Muzhi, YANG Lixia, ZHAO Xiaofeng, PENG Di, MOU Rende, LIU Delin . Evaluation of Thermal Insulation Performance of EB-PVD YSZ Thermal Barrier Coatings by Phosphorescence Lifetime Online Measurement[J]. Journal of Shanghai Jiaotong University, 2023 , 57(9) : 1186 -1195 . DOI: 10.16183/j.cnki.jsjtu.2022.252

References

[1] THAKARE J G, PANDEY C, MAHAPATRA M M, et al. Thermal barrier coatings—A state of the art review[J]. Metals and Materials International, 2021, 27(7): 1947-1968.
[2] 金圣皓, 王博翔, 赵长颖. 热障涂层热物性研究进展[J]. 航空制造技术, 2021, 64(13): 59-76.
[2] JIN Shenghao, WANG Boxiang, ZHAO Changying. Research on status of thermal properties of thermal barrier coatings[J]. Aeronautical Manufacturing Technology, 2021, 64(13): 59-76.
[3] BAKAN E, VA?EN R. Ceramic top coats of plasma-sprayed thermal barrier coatings: Materials, processes, and properties[J]. Journal of Thermal Spray Technology, 2017, 26(6): 992-1010.
[4] 赵娟利, 杨岚, 张成冠, 等. 热障涂层材料研究进展[J]. 现代技术陶瓷, 2020, 41(3): 148-170.
[4] ZHAO Juanli, YANG Lan, ZHANG Chengguan, et al. Recent progress in thermal barrier coatings[J]. Advanced Ceramics, 2020, 41(3): 148-170.
[5] BINDER C, FEUK H, RICHTER M. Phosphor thermometry for in-cylinder surface temperature measurements in diesel engines[J]. Journal of Luminescence, 2020, 226: 117415.
[6] YANG L X, PENG D, ZHAO C S, et al. Evaluation of the in-depth temperature sensing performance of Eu-and Dy-doped YSZ in air plasma sprayed thermal barrier coatings[J]. Surface and Coatings Technology, 2017, 316: 210-218.
[7] 周益春, 杨丽, 刘志远, 等. 涡轮叶片热障涂层隔热效果的研究进展[J]. 中国材料进展, 2020, 39(10): 707-722.
[7] ZHOU Yichun, YANG Li, LIU Zhiyuan, et al. Research progress on insulation performance of thermal barrier coatings on turbine blade[J]. Materials China, 2020, 39(10): 707-722.
[8] 张小伍, 徐佰明. 电子束物理气相沉积热障涂层隔热性能研究[J]. 汽轮机技术, 2020, 62(5): 399-400.
[8] ZHANG Xiaowu, XU Baiming. Thermal insulating properties of YSZ TBC deposited by EB-PVD[J]. Turbine Technology, 2020, 62(5): 399-400.
[9] LIU Z Y, ZHU W, YANG L, et al. Numerical prediction of thermal insulation performance and stress distribution of thermal barrier coatings coated on a turbine vane[J]. International Journal of Thermal Sciences, 2020, 158: 106552.
[10] 郝洪亮, 龙芸, 杨希刚, 等. 高温服役过程热障涂层隔热性能演变规律[J]. 动力工程学报, 2020, 40(8): 671-677.
[10] HAO Hongliang, LONG Yun, YANG Xigang, et al. Insulation property evolution of thermal barrier coatings during high temperature services[J]. Journal of Chinese Society of Power Engineering, 2020, 40(8): 671-677.
[11] 刘建华, 刘永葆, 贺星, 等. 涡轮叶片多层结构热障涂层隔热效果分析[J]. 航空发动机, 2017, 43(4): 1-6.
[11] LIU Jianhua, LIU Yongbao, HE Xing, et al. Analyzing of thermal insulation of thermal barrier coatings of a turbine vane[J]. Aeroengine, 2017, 43 (4): 1-6.
[12] FEIST J P, HEYES A L, NICHOLLS J R. Phosphor thermometry in an electron beam physical vapour deposition produced thermal barrier coating doped with dysprosium[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2001, 215(6): 333-341.
[13] FEIST J P, SOLLAZZO P Y, BERTHIER S, et al. Application of an industrial sensor coating system on a Rolls-Royce jet engine for temperature detection[J]. Journal of Engineering for Gas Turbines and Power, 2013, 135 (1): 012101.
[14] ALLISON S W, BESHEARS D L, CATES M R, et al. Luminescence of YAG: Dy and YAG: Dy, Er crystals to 1700 ℃[J]. Measurement Science and Technology, 2020, 31(4): 044001.
[15] JENKINS T P, HESS C F, ALLISON S W, et al. Measurements of turbine blade temperature in an operating aero engine using thermographic phosphors[J]. Measurement Science and Technology, 2020, 31(4): 044003.
[16] ELDRIDGE J I, WOLFE D E. Monitoring thermal barrier coating delamination progression by upconversion luminescence imaging[J]. Surface and Coatings Technology, 2019, 378: 124923.
[17] ELDRIDGE J I. Luminescence decay-based Y2O3: Er phosphor thermometry: Temperature sensitivity governed by multiphonon emission with an effective phonon energy transition[J]. Journal of Luminescence, 2019, 214: 116535.
[18] PENG D, YANG L X, CAI T, et al. Phosphor-doped thermal barrier coatings deposited by air plasma spray for in-depth temperature sensing[J]. Sensors (Basel, Switzerland), 2016, 16(10): 1490.
[19] YANG L X, PENG D, SHAN X, et al. “Oxygen quenching” in Eu-based thermographic phosphors: Mechanism and potential application in oxygen/pressure sensing[J]. Sensors and Actuators B: Chemical, 2018, 254: 578-587.
[20] LI Y Z, CAI T, YANG L X, et al. Effect of oxygen partial pressure on the phosphorescence of different lanthanide ion (Ln3+)-doped yttria-stabilised zirconia[J]. Sensors and Actuators B: Chemical, 2020, 308: 127666.
[21] KNAPPE C, LINDéN J, ABOU NADA F, et al. Investigation and compensation of the nonlinear response in photomultiplier tubes for quantitative single-shot measurements[J]. The Review of Scientific Instruments, 2012, 83(3): 034901.
[22] GENTLEMAN M M. High temperature sensing of thermal barrier materials by luminescence[D]. Santa Barbara, USA: University of California, 2006.
[23] HUI Y, ZHAO Y, ZHAO S M, et al. Fluorescence of Eu3+ as a probe of phase transformation of zirconia[J]. Journal of Alloys and Compounds, 2013, 573: 177-181.
[24] 单水维. Y2O3稳定ZrO2陶瓷材料导热性能的研究[D]. 包头: 内蒙古科技大学, 2007.
[24] SHAN Shuiwei. Study on thermal conduction properties of yttria-stabilized zirconia ceramic material[D]. Baotou: Inner Mongolia University of Science & Technology, 2007.
Outlines

/