Materials Science and Engineering

Thermal Conductivity of Bulk Attapulgite Prepared by Pressureless Sintering

Expand
  • a. School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    b. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2021-07-12

  Revised date: 2021-08-28

  Accepted date: 2021-08-30

  Online published: 2022-08-11

Abstract

To explore the potential of attapulgite as thermal barrier materials, bulk attapulgite samples were prepared by pressureless sintering. The effects of sintering temperature on the phase composition, porosity, microstructure, and thermal conductivity of bulk attapulgite were investigated. With increasing sintering temperature, bulk attapulgite transforms from predominant quartz phase (700 ℃) to coexistence of quartz and enstatite phases (800—900 ℃), and to coexistence of quartz, enstatite and cristobalite phases (1000—1200 ℃). Meanwhile, the microstructure of the bulk attapulgite changes from random, loose packed fiber-like porous morphology, to dense structure with a random distribution of MgO·SiO2 grains inside the SiO2 matrix to result in a significant decrease in porosity. The thermal conductivity of bulk attapulgite increases with increasing temperature. When sintered at 700 ℃, bulk attapulgite presents a temperature-independent thermal conductivity with an ultra-low value of 0.16 W/(m·K) at room temperature. Attapulgite, with its natural abundance and low cost, along with the ultra-low thermal conductivity, has a great potential as thermal barrier materials.

Cite this article

SUN Xucheng, ZHAO Xiaofeng, YANG Fan . Thermal Conductivity of Bulk Attapulgite Prepared by Pressureless Sintering[J]. Journal of Shanghai Jiaotong University, 2023 , 57(2) : 194 -200 . DOI: 10.16183/j.cnki.jsjtu.2021.254

References

[1] GIUSTETTO R, XAMENA F X L, RICCHIARDI G, et al. Maya Blue: A computational and spectroscope study[J]. Physics and Chemistry B, 2009, 109(41): 19360-19368.
[2] 王爱勤. 凹凸棒石棒晶束解离及其纳米功能复合材料[M]. 北京: 科学出版社, 2014.
[2] WANG Aiqin. Attapulgite rod beam dissociation and nanofunctional composites[M]. Beijing: Science Press, 2014.
[3] WU X, ZHU W, ZHANG X, et al. Catalytic deposition of nanocarbon onto palygorskite and its adsorption of phenol[J]. Applied Clay Science, 2011, 52(4): 400-406.
[4] CAO J, SHAO G, WANG Y, et al. CuO catalysts supported on attapulgite clay for low-temperature CO oxidation[J]. Catalysis Communications, 2008, 9(15): 2555-2559.
[5] ZHAO D, ZHOU J, LIU N. Characterization of the structure and catalytic activity of copper modified palygorskite/TiO2 (Cu2+-PG/TiO2) catalysts[J]. Materials Science and Engineering: A, 2006, 431(1/2): 256-262.
[6] XI Y, MALLAVARAPU M, NAIDU R. Adsorption of the herbicide 2, 4-D on organo-palygorskite[J]. Applied Clay Science, 2010, 49(3): 255-261.
[7] WU X, ZHU W, ZHANG X, et al. Catalytic deposition of nanocarbon onto palygorskite and its adsorption of phenol[J]. Applied Clay Science, 2011, 52(4): 400-406.
[8] ELTAWEIL A S, ELMONAEM E M A, MOOHY-ELDIN M S, et al. Fabrication of attapulgite/magnetic aminated chitosan composite as efficient and reusable adsorbent for Cr (VI) ions[J]. Scientific Reports, 2021, 11 (1): 16598.
[9] WANG Y, QIN Z, ZHANG T, et al. Preparation and thermophysical properties of three-dimensional attapulgite based composite phase change materials[J]. Journal of Energy Storage, 2020, 32: 101847.
[10] HU F, LI T, ZHANG F, et al. Preparation and properties of chitosan/acidified attapulgite composite proton exchange membranes for fuel cell applications[J]. Journal of Applied Polymer Science, 2020, 137 (36): 49076.
[11] WANG J, WU J, HAN F. Eco-friendly and scratch-resistant hybrid coating on mesh for gravity-driven oil/water separation[J]. Journal of Cleaner Production, 2019, 241: 118369.
[12] GU S, KANG X, WANG L, et al. Clay mineral adsorbents for heavy metal removal from wastewater: A review[J]. Environmental Chemistry Letters, 2019, 17 (2): 629-654.
[13] JONES B F, GALAN E. Sepiolite and palygorskite[J]. Reviews in Mineralogy and Geochemistry, 1988, 19(1): 631-674.
[14] LIU Y, WANG X, WANG Y, et al. Ultra-low thermal conductivities of hot-pressed attapulgite and its potential as thermal insulation material[J]. Applied Physics Letters, 2016, 108(10): 101906.
[15] ZHOU J, LIU N, LI Y, et al. Microscopic structure characteristics of attapulgite[J]. Bulletin of the Chinese Ceramic Society, 1996, 18(6): 50-55.
[16] CHIARI G, GIUSTETTO R, RICCHIARD G. Crystal structure re?nement of palygorskite and Maya Blue from molecular modeling and powder synchrotron diffraction[J]. European Journal of Mineralogy, 2003, 15(1): 21-33.
[17] HIRSIGER W, MULLER-VONMOOS M, WIEDEMANN H G. Thermal analysis of palygorskite[J]. Thermochimica Acta, 1975, 13(2): 223-230.
[18] ROBERTO G, GIACOMO C. Crystal structure refinement of palygorskite from neutron powder diffraction[J]. European Journal of Mineralogy, 2004, 16(3): 521-532.
[19] LOKANATHA S, MATHUR B K, SAMANTARAY B K, et al. Dehydration and phase transformation in attapulgite (palygorskite)—An R.D.F. study[J]. Journal of Materials Science Letters, 1984 (3): 1105-1108.
[20] POST J E, HEANEY P J. Synchrotron powder X-ray diffraction study of the structure and dehydration behavior of palygorskite[J]. American Mineralogist, 2008, 93(4): 667-675.
[21] KOPP H. Investigations of the specific heat of solid bodies[J]. Philosophical Transactions of the Royal Society London, 1865, 155: 71-202.
[22] LONNGREN K E, BAI E W. On the global warming problem due to carbon dioxide[J]. Energy Policy, 2008, 36(4): 1567-1568.
[23] 邓晨, 杨炳飞. 焙烧凹凸棒石矿物学特征、氨氮吸附过程与特性[J]. 矿产保护与利用, 2020, 40(1): 23-27.
[23] DENG Chen, YANG Bingfei. Mineralogical characteristics of calcined attapulgite, ammonia nitrogen adsorption process and characteristics[J]. Mineral Protection and Utilization, 2020, 40(1): 23-27.
[24] CHEN H, HUANG Y, SHEN H, et al. Modeling temporal variations in global residential energy consumption and pollutant emissions[J]. Applied Energy, 2016, 184: 820-829.
[25] 叶大伦, 胡建华. 实用无机物热力学数据手册[M]. 第2版. 北京: 冶金工业出版社, 2002.
[25] YE Dalun, HU Jianhua. Handbook of thermodynamic data for practical inorganic materials[M]. 2nd ed. Beijing: Metallurgical Industry Press, 2002.
Outlines

/