Naval Architecture, Ocean and Civil Engineering

Numerical Analysis of Influence of Blade Icing on Dynamic Response of Integrated Wind Turbine Structure

Expand
  • College of Naval Architecture and Ocean Engineering, Dalian Maritime University, Dalian 116026, Liaoning, China

Received date: 2021-07-14

  Online published: 2022-10-09

Abstract

Based on the integrated jacket-support offshore wind turbine model of the National Renewable Energy Laboratory (NREL), the computational fluid dynamics (CFD) method is coupled with the wind turbine integrated analysis method to study the blade icing process and its influence on the overall dynamic performance of the wind turbine. First, the blade motion attitude calculated by the integrated analysis method is input into CFD. The discrete multiphase model and melting solidification model are used to simulate the icing growth of three-dimensional wind turbine blades. The k-ε turbulence model is used to calculate the aerodynamic performance before and after icing. Finally, the aerodynamic results after blade icing are returned to the integrated analysis method to analyze the influence of blade icing on the overall response of the wind turbine. The results show that the blade icing increases linearly along the blade span. The icing is mainly concentrated on the leading edge of the blade with the thickest ice accumulation at the tip. The lift coefficient decreases and the drag coefficient increases after icing. Blade icing will reduce the power of the whole machine, the torque, and the rotor speed. At the same time, it will lead to additional vibration response at the blade tip and tower top, and increase the wind speed required by the wind turbine to reach the rated power.

Cite this article

CHUANG Zhenju, LI Chunzheng, LIU Shewen . Numerical Analysis of Influence of Blade Icing on Dynamic Response of Integrated Wind Turbine Structure[J]. Journal of Shanghai Jiaotong University, 2022 , 56(9) : 1176 -1187 . DOI: 10.16183/j.cnki.jsjtu.2021.258

References

[1] LEHTOMÄKI V. Emerging from the cold[J]. Windpower Monthly, 2016, 32(8): 32-34.
[2] HOCHART C, FORTIN G, PERRON J, et al. Wind turbine performance under icing conditions[J]. Wind Energy, 2008, 11(4): 319-333.
[3] LEHTOMÄKI V, RISSANEN S, WADHAM-GAGNON M, et al. Fatigue loads of iced turbines: Two case studies[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 158: 37-50.
[4] 王可光, 吴辉碇, 王彩欣, 等. 渤海冰期的基本水文气象参量研究[J]. 海洋通报, 1999, 18(2): 17-28.
[4] WANG Keguang, WU Huiding, WANG Caixin, et al. A study of basic hydrologic and meteorological parametersin the ice-covered Bohai Sea[J]. Marine Science Bulletin, 1999, 18(2): 17-28.
[5] SHIN J, BOND T.Results of an icing test on a NACA 0012 airfoil in the NASA Lewis Icing Research Tunnel[C]// 30th Aerospace Sciences Meeting and Exhibit. Reston, Virginia: AIAA, 1992: 647.
[6] HAN Y Q, PALACIOS J, SCHMITZ S. Scaled ice accretion experiments on a rotating wind turbine blade[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2012, 109: 55-67.
[7] 胡良权, 陈进格, 沈昕, 等. 结冰对风力机载荷的影响[J]. 上海交通大学学报, 2018, 52(8): 904-909.
[7] HU Liangquan, CHEN Jinge, SHEN Xin, et al. Load of wind turbine affected by icing[J]. Journal of Shanghai Jiao Tong University, 2018, 52(8): 904-909.
[8] SWITCHENKO D, HABASHI W, REID T, et al. FENSAP-ICE simulation of complex wind turbine icing events, and comparison to observed performance data[C]// 32nd ASME Wind Energy Symposium. Reston, Virginia: AIAA, 2014: 1399.
[9] 蒋维, 李亚冬, 李海波, 等. 水平轴风力机桨叶覆冰数值模拟[J]. 太阳能学报, 2014, 35(1): 83-88.
[9] JIANG Wei, LI Yadong, LI Haibo, et al. Simulation of icing on horizontal-axis wind turbine blade[J]. Acta Energiae Solaris Sinica, 2014, 35(1): 83-88.
[10] 郝艳捧, 刘国特, 阳林, 等. 风力机组叶片覆冰数值模拟及其气动载荷特性研究[J]. 电工技术学报, 2015, 30(10): 292-300.
[10] HAO Yanpeng, LIU Guote, YANG Lin, et al. Study on ice numerical simulation and its power loss characteristics for the blades of wind turbine[J]. Transactions of China Electrotechnical Society, 2015, 30(10): 292-300.
[11] 梁健, 舒立春, 胡琴, 等. 风力机叶片雨淞覆冰的三维数值模拟及试验研究[J]. 中国电机工程学报, 2017, 37(15): 4430-4436.
[11] LIANG Jian, SHU Lichun, HU Qin, et al. 3-D numerical simulations and experiments on glaze ice accretion of wind turbine blades[J]. Proceedings of the CSEE, 2017, 37(15): 4430-4436.
[12] 刘杰, 杨倩, 吴涛, 等. 霜冰条件下风力机翼型结冰的数值计算预测[J]. 机电一体化, 2020, 26(5): 3-11.
[12] LIU Jie, YANG Qian, WU Tao, et al. Numerical simulation prediction of icing on airfoil of wind turbine blade under rime ice conditions[J]. Mechatronics, 2020, 26(5): 3-11.
[13] WANG Q, XIAO J P, ZHANG T T, et al. A new wind turbine icing computational model based on Free Wake Lifting Line Model and Finite Area Method[J]. Renewable Energy, 2020, 146: 342-358.
[14] WANG Q, YI X, LIU Y, et al. Simulation and analysis of wind turbine ice accretion under yaw condition via an Improved Multi-Shot Icing Computational Model[J]. Renewable Energy, 2020, 162: 1854-1873.
[15] National Renewable Energy Laboratory. FAST v8[CP/OL]. (2016-07-21) [2021-07-14]. https://www.nrel.gov/wind/nwtc/fastv8.html.
[16] WIROGO S, SRIRAMBHATLA S. An eulerian method to calculate the collection efficiency on two and three dimensional bodies[C]// 41st Aerospace Sciences Meeting and Exhibit. Reston, Virginia: AIAA, 2003: 1073.
[17] SCHILLER L V, NAUMANN Z Z. Über die grundlegenden berechnungen bei der schwerkraftaufbereitung[J]. Zeitschrift Des Vereines Deutscher Ingenieure, 1933, 77: 318-321.
[18] MESSINGER B L. Equilibrium temperature of an unheated icing surface as a function of air speed[J]. Journal of the Aeronautical Sciences, 1953, 20(1): 29-42.
[19] JONKMAN J, BUHL M. New developments for the NWTC’s FAST aeroelastic HAWT simulator[C]// 42nd AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virginia: AIAA, 2004: 504.
[20] KANE T R, LEVINSON D A. Dynamics, theory and applications[M]. New York, USA: McGraw Hill, 1985.
[21] POPKO W, VORPAHL F, ZUGA A, et al. Offshore code comparison collaboration continuation (OC4), Phase 1—Results of coupled simulations of an offshore wind turbine with jacket support structure[C]// The twenty-second international offshore and polar engineering conference. Rhodes, Greece: OnePetro, 2012: 337-346.
[22] JONKMAN J, BUTTERFIELD S, MUSIAL W, et al. Definition of a 5-MW reference wind turbine for offshore system development[R]. Colorado: Office of Scientific and Technical Information, 2009.
[23] FORTIN G, LULIANO E, MINGIONE G, et al. CIRAAMIL ice accretion code improvements[C]// 1st AIAA Atmospheric and Space Environments Conference. Reston, Virginia: AIAA, 2009: 3968.
[24] FU P, FARZANEH M. A CFD approach for modeling the rime-ice accretion process on a horizontal-axis wind turbine[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(4/5): 181-188.
[25] HANSEN C. AirfoilPrep: An excel workbook for generating airfoil tables for AeroDyn[EB/OL].(2004-11-1) [2021. 07. 14]. https://www.nrel.gov/wind/nwtc/airfoil-prep.html.
Outlines

/