New Type Power System and the Integrated Energy

Challenges of Distributed Green Energy Carbon Trading Mechanism and Carbon Data Management

Expand
  • Key Laboratory of Control of Power Transmission and Conversion of the Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2021-11-08

  Online published: 2022-08-26

Abstract

To achieve the double carbon goal of “carbon peaking and carbon neutrality”, the construction of the power system which is based on the green energy needs to be accelerated. With the growth of the system scale, the distributed green energy carbon trading mechanism and the carbon data management technology based on the blockchain technology can effectively encourage the development of green energy and become effective means for the implementation of low-carbon electricity. The accurate and real-time carbon emission calculation will further provide data support for the accuracy and security of carbon trading information. First, the current research status of green certificate trading and carbon asset management is introduced. Next, the adaptability analysis of the key technologies of the blockchain technology in the four directions of green electricity traceability, green certificate trading, carbon trading, and joint market of green certificate and carbon assets is performed. Afterwords, the specific mathematical models of carbon emission calculation is studied, and the data availability of carbon source traceability methods applicable to the blockchain architecture are discussed. Finally, some suggestions for the future development of carbon emission flow analysis are proposed.

Cite this article

LI Xingzhi, HAN Bei, LI Guojie, WANG Keyou, XU Jin . Challenges of Distributed Green Energy Carbon Trading Mechanism and Carbon Data Management[J]. Journal of Shanghai Jiaotong University, 2022 , 56(8) : 977 -993 . DOI: 10.16183/j.cnki.jsjtu.2021.450

References

[1] 黄强, 郭怿, 江建华, 等. “双碳”目标下中国清洁电力发展路径[J]. 上海交通大学学报, 2021, 55(12): 1499-1509.
[1] HUANG Qiang, GUO Yi, JIANG Jianhua, et al. Development pathway of China's clean electricity under carbon peaking and carbon neutrality goals[J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1499-1509.
[2] 魏利屾, 冯宇昂, 方家琨, 等. 现货市场环境下新能源并网接入对市场出清的影响[J]. 上海交通大学学报, 2021, 55(12): 1631-1639.
[2] WEI Lishen, FENG Yuang, FANG Jiakun, et al. Impact of renewable energy integration on market-clearing results in spot market environment[J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1631-1639.
[3] 赵新刚, 梁吉, 任领志, 等. 能源低碳转型的顶层制度设计: 可再生能源配额制[J]. 电网技术, 2018, 42(4): 1164-1169.
[3] ZHAO Xingang, LIANG Ji, REN Lingzhi, et al. Top-level institutional design for energy low-carbon transition: Renewable portfolio standards[J]. Power System Technology, 2018, 42(4): 1164-1169.
[4] EASTIN L J L. An assessment of the effectiveness of renewable portfolio standards in the United States[J]. The Electricity Journal, 2014, 27(7): 126-137.
[5] 张玉琢. 绿色证书双边交易模式及交易策略研究[D]. 北京: 华北电力大学, 2020.
[5] ZHANG Yuzhuo. Research on bilateral transaction mode and trading strategies of tradable green certificates[D]. Beijing: North China Electric Power University, 2020.
[6] ERDIWANSYAH, MAHIDIN, HUSIN H., et al. A critical review of the integration of renewable energy sources with various technologies[J]. Protection and Control of Modern Power Systems, 2021, 6(1): 37-54.
[7] 余顺坤, 毕平平, 杨文茵, 等. 基于配额制的可再生能源动态发展系统动力学研究[J]. 中国电机工程学报, 2018, 38(9): 2599-2608.
[7] YU Shunkun, BI Pingping, YANG Wenyin, et al. Dynamic development system dynamics of renewable energy considering renewable energy quota system[J]. Proceedings of the CSEE, 2018, 38(9): 2599-2608.
[8] 徐乾耀, 康重庆, 江长明, 等. 多时空尺度风电消纳体系初探[J]. 电力系统保护与控制, 2013, 41(1): 28-32.
[8] XU Qianyao, KANG Chongqing, JIANG Changming, et al. Preliminary analysis on wind power accommodation system from multiple temporal and spatial scale perspective[J]. Power System Protection and Control, 2013, 41(1): 28-32.
[9] 马子明, 钟海旺, 谭振飞, 等. 以配额制激励可再生能源的需求与供给国家可再生能源市场机制设计[J]. 电力系统自动化, 2017, 41(24): 90-96.
[9] MA Ziming, ZHONG Haiwang, TAN Zhenfei, et al. Incenting demand and supply of renewable energy with renewable portfolio standard: Mechanism design of national renewable energy market[J]. Automation of Electric Power Systems, 2017, 41(24): 90-96.
[10] 朱继忠, 冯禹清, 谢平平, 等. 考虑可再生能源配额制的中国电力市场均衡模型[J]. 电力系统自动化, 2019, 43(1): 168-175.
[10] ZHU Jizhong, FENG Yuqing, XIE Pingping, et al. Equilibrium model of Chinese electricity market considering renewable portfolio standard[J]. Automation of Electric Power Systems, 2019, 43(1): 168-175.
[11] 周晓洁, 彭谦, 杨睿, 等. 绿色电力证书交易影响下计及输电阻塞影响的综合型能源发售电商竞价策略研究[J]. 电网技术, 2020, 44(4): 1317-1324.
[11] ZHOU Xiaojie, PENG Qian, YANG Rui, et al. Power price marketing strategy of comprehensive energy-based electricity sales company participating in electricity market competition under ubiquitous environment of Internet of Things[J]. Power System Technology, 2020, 44(4): 1317-1324.
[12] 梁吉, 左艺, 张玉琢, 等. 基于可再生能源配额制的风电并网节能经济调度[J]. 电网技术, 2019, 43(7): 2528-2534.
[12] LIANG Ji, ZUO Yi, ZHANG Yuzhuo, et al. Energy-saving and economic dispatch of power system containing wind power integration under renewable portfolio standard[J]. Power System Technology, 2019, 43(7): 2528-2534.
[13] 骆钊, 秦景辉, 梁俊宇, 等. 含绿色证书跨链交易的综合能源系统运行优化[J]. 电网技术, 2021, 45(4): 1311-1320.
[13] LUO Zhao, QIN Jinghui, LIANG Junyu, et al. Operation optimization of integrated energy system with green certificate cross-chain transaction[J]. Power System Technology, 2021, 45(4): 1311-1320.
[14] 张晓辉, 闫柯柯, 卢志刚, 等. 基于碳交易的含风电系统低碳经济调度[J]. 电网技术, 2013, 37(10): 2697-2704.
[14] ZHANG Xiaohui, YAN Keke, LU Zhigang, et al. Carbon trading based low-carbon economic dispatching for power grid integrated with wind power system[J]. Power System Technology, 2013, 37(10): 2697-2704.
[15] DAI H C, XIE Y, LIU J Y, et al. Aligning renewable energy targets with carbon emissions trading to achieve China's INDCs: A general equilibrium assessment[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 4121-4131.
[16] LAURIKKA H, KOLJONEN T. Emissions trading and investment decisions in the power sector-a case study in Finland[J]. Energy Policy, 2006, 34(9): 1063-1074.
[17] 李现忠, 蔡兴国, 付春梅. 碳交易机制下考虑节能减排的竞价交易模式[J]. 电力系统自动化, 2011, 35(10): 48-52.
[17] LI Xianzhong, CAI Xingguo, FU Chunmei. An energy saving and emission reduction based bidding transaction mode under carbon trading mechanism[J]. Automation of Electric Power Systems, 2011, 35(10): 48-52.
[18] 迟远英, 王彦亮, 牛东晓, 等. 碳排放交易下的发电权置换优化模型[J]. 电网技术, 2010, 34(6): 78-81.
[18] CHI Yuanying, WANG Yanliang, NIU Dongxiao, et al. An optimization model of generating right exchanging under carbon emission trading[J]. Power System Technology, 2010, 34(6): 78-81.
[19] 张程飞, 袁越, 张新松, 等. 考虑碳排放配额影响的含风电系统日前调度计划模型[J]. 电网技术, 2014, 38(8): 2114-2120.
[19] ZHANG Chengfei, YUAN Yue, ZHANG Xinsong, et al. Day-ahead dispatching scheduling for power grid integrated with wind farm considering influence of carbon emission quota[J]. Power System Technology, 2014, 38(8): 2114-2120.
[20] 卢志刚, 郭凯, 闫桂红, 等. 考虑需求响应虚拟机组和碳交易的含风电电力系统优化调度[J]. 电力系统自动化, 2017, 41(15): 58-65.
[20] LU Zhigang, GUO Kai, YAN Guihong, et al. Optimal dispatch of power system integrated with wind power considering virtual generator units of demand response and carbon trading[J]. Automation of Electric Power Systems, 2017, 41(15): 58-65.
[21] 娄素华, 胡斌, 吴耀武, 等. 碳交易环境下含大规模光伏电源的电力系统优化调度[J]. 电力系统自动化, 2014, 38(17): 91-97.
[21] LOU Suhua, HU Bin, WU Yaowu, et al. Optimal dispatch of power system integrated with large scale photovoltaic generation under carbon trading environment[J]. Automation of Electric Power Systems, 2014, 38(17): 91-97.
[22] 高亚静, 李瑞环, 梁海峰, 等. 碳市场环境下计及碳捕集电厂和换电站的电力系统优化调度[J]. 电力系统自动化, 2014, 38(17): 150-156.
[22] GAO Yajing, LI Ruihuan, LIANG Haifeng, et al. Power system optimal dispatch incorporating carbon capture power plant and battery swap station under carbon market environment[J]. Automation of Electric Power Systems, 2014, 38(17): 150-156.
[23] 雷涛, 鞠立伟, 彭道鑫, 等. 计及碳排放权交易的风电储能协同调度优化模型[J]. 华北电力大学学报(自然科学版), 2015, 42(3): 97-104.
[23] LEI Tao, JU Liwei, PENG Daoxin, et al. Collaborative scheduling optimization model of wind power and energy storage system considering the carbon emission trade[J]. Journal of North China Electric Power University (Natural Science Edition), 2015, 42(3): 97-104.
[24] ZHANG N, HU Z G, DAI D H, et al. Unit commitment model in smart grid environment considering carbon emissions trading[J]. IEEE Transactions on Smart Grid, 2016, 7(1): 420-427.
[25] 张刚, 张峰, 张利, 等. 考虑碳排放交易的日前调度双阶段鲁棒优化模型[J]. 中国电机工程学报, 2018, 38(18): 5490-5499.
[25] ZHANG Gang, ZHANG Feng, ZHANG Li, et al. Two-stage robust optimization model of day-ahead scheduling considering carbon emissions trading[J]. Proceedings of the CSEE, 2018, 38(18): 5490-5499.
[26] 卫志农, 张思德, 孙国强, 等. 基于碳交易机制的电-气互联综合能源系统低碳经济运行[J]. 电力系统自动化, 2016, 40(15): 9-16.
[26] WEI Zhinong, ZHANG Side, SUN Guoqiang, et al. Carbon trading based low-carbon economic operation for integrated electricity and natural gas energy system[J]. Automation of Electric Power Systems, 2016, 40(15): 9-16.
[27] 狄开丽, 李鹏, 华浩瑞. 计及碳排放成本的交直流混合微网优化运行[J]. 电力建设, 2016, 37(7): 12-19.
[27] DI Kaili, LI Peng, HUA Haorui. Optimal operation of AC-DC hybrid microgrid considering carbon emission cost[J]. Electric Power Construction, 2016, 37(7): 12-19.
[28] NAKAMOTO S. Bitcoin: A peer-to-peer electronic cash system[DB/OL]. (2019-08-22)[2021-11-08]. https://bitcoin.org/en/bitcoin-paper.
[29] HASSELGREN A, KRALEVSKA K, GLIGOROSKI D, et al. Blockchain in healthcare and health sciences-A scoping review[J]. International Journal of Medical Informatics, 2020, 134: 104040.
[30] WANG Q, ZHU X Q, NI Y Y, et al. Blockchain for the IoT and industrial IoT: A review[J]. Internet of Things, 2020, 10: 100081.
[31] 蔡元纪, 顾宇轩, 罗钢, 等. 基于区块链的绿色证书交易平台:概念与实践[J]. 电力系统自动化, 2020, 44(15): 1-9.
[31] CAI Yuanji, GU Yuxuan, LUO Gang, et al. Blockchain based trading platform of green power certificate: Concept and practice[J]. Automation of Electric Power Systems, 2020, 44(15): 1-9.
[32] 冯昌森, 谢方锐, 文福拴, 等. 基于智能合约的绿证和碳联合交易市场的设计与实现[J]. 电力系统自动化, 2021, 45(23): 1-11.
[32] FENG Changsen, XIE Fangrui, WEN Fushuan, et al. Design and implementation of joint trading market for green power certificate and carbon based on smart contract[J]. Automation of Electric Power Systems, 2021, 45(23): 1-11.
[33] 袁书林, 马瑞. 基于电力系统碳排放流理论的碳排放分摊模型研究[J]. 现代电力, 2014, 31(6): 70-75.
[33] YUAN Shulin, MA Rui. A research on the allocation model of carbon emission in power system based on carbon emission flow theory[J]. Modern Electric Power, 2014, 31(6): 70-75.
[34] 辛建波, 范瑞祥, 郑蜀江, 等. 智能配用电园区低碳效益仿真与评价系统及其在江西的应用[J]. 电力系统保护与控制, 2014, 42(7): 86-90.
[34] XIN Jianbo, FAN Ruixiang, ZHENG Shujiang, et al. Low-carbon benefit simulation and evaluation system for smart distribution grid and its application in Jiangxi Province[J]. Power System Protection and Control, 2014, 42(7): 86-90.
[35] 陈冲. 我国二氧化碳排放、经济与能源发展的动态关系分析: 基于1978-2012年时间序列数据的VAR模型[J]. 华北电力大学学报(社会科学版), 2014(4): 15-23.
[35] CHEN Chong. Research on the dynamic relations among carbon emissions, economic and energy development in China: Based on the VAR model analysis of time series data from1978 to 2012[J]. Journal of North China Electric Power University (Social Sciences), 2014(4): 15-23.
[36] 王建军, 李莉. 基于随机性环境影响评估模型的电力消费和碳排放关系实证分析[J]. 电网技术, 2014, 38(3): 628-632.
[36] WANG Jianjun, LI Li. Empirical analysis on relation between electricity consumption and carbon emission based on stochastic impacts by regression on population, affluence and technology model[J]. Power System Technology, 2014, 38(3): 628-632.
[37] 曾刚, 万志宏. 碳排放权交易: 理论及应用研究综述[J]. 金融评论, 2010, 2(4): 54-67.
[37] ZENG Gang, WAN Zhihong. Carbon emission permits trading: A summary[J]. Chinese Review of Financial Studies, 2010, 2(4): 54-67.
[38] CHATTOPADHYAY D. Modeling greenhouse gas reduction from the Australian electricity sector[J]. IEEE Transactions on Power Systems, 2010, 25(2): 729-740.
[39] LENZEN M, MUNKSGAARD J. Energy and CO2 life-cycle analyses of wind turbines-review and applications[J]. Renewable Energy, 2002, 26(3): 339-362.
[40] 周黎莎, 李晨. 基于系统动力学的智能电网低碳效益动态评价研究[J]. 华东电力, 2014, 42(1): 178-184.
[40] ZHOU Lisha, LI Chen. Dynamic evaluation of smart grid low-carbon benefits based on system dynamics[J]. East China Electric Power, 2014, 42(1): 178-184.
[41] 龚昱, 蒋传文, 李明炜, 等. 基于复功率潮流追踪的电力用户侧碳排放计量[J]. 电力系统自动化, 2014, 38(17): 113-117.
[41] GONG Yu, JIANG Chuanwen, LI Mingwei, et al. Carbon emission calculation on power consumer side based on complex power flow tracing[J]. Automation of Electric Power Systems, 2014, 38(17): 113-117.
[42] 汪锋, 豆南南, 喻冬梅. 基于电力系统碳排放流的分省化石能源消费CO2排放量测算[J]. 电力系统自动化, 2014, 38(17): 105-112.
[42] WANG Feng, DOU Nannan, YU Dongmei. Measurement of provincial CO2 emission from fossil energy consumption based on carbon emission flow in power systems[J]. Automation of Electric Power Systems, 2014, 38(17): 105-112.
[43] 李保卫, 胡泽春, 宋永华, 等. 用户侧电力碳排放强度的评估原则与模型[J]. 电网技术, 2012, 36(8): 6-11.
[43] LI Baowei, HU Zechun, SONG Yonghua, et al. Principle and model for assessment on carbon emission intensity caused by electricity at consumer side[J]. Power System Technology, 2012, 36(8): 6-11.
[44] 周天睿, 康重庆, 徐乾耀, 等. 电力系统碳排放流分析理论初探[J]. 电力系统自动化, 2012, 36(7): 38-43.
[44] ZHOU Tianrui, KANG Chongqing, XU Qianyao, et al. Preliminary theoretical investigation on power system carbon emission flow[J]. Automation of Electric Power Systems, 2012, 36(7): 38-43.
[45] 周天睿, 康重庆, 徐乾耀, 等. 电力系统碳排放流的计算方法初探[J]. 电力系统自动化, 2012, 36(11): 44-49.
[45] ZHOU Tianrui, KANG Chongqing, XU Qianyao, et al. Preliminary investigation on a method for carbon emission flow calculation of power system[J]. Automation of Electric Power Systems, 2012, 36(11): 44-49.
[46] 周天睿, 康重庆, 徐乾耀, 等. 碳排放流在电力网络中分布的特性与机理分析[J]. 电力系统自动化, 2012, 36(15): 39-44.
[46] ZHOU Tianrui, KANG Chongqing, XU Qianyao, et al. Analysis on distribution characteristics and mechanisms of carbon emission flow in electric power network[J]. Automation of Electric Power Systems, 2012, 36(15): 39-44.
[47] 李保卫, 胡泽春, 宋永华, 等. 电力碳排放区域分摊的原则与模型[J]. 电网技术, 2012, 36(7): 12-18.
[47] LI Baowei, HU Zechun, SONG Yonghua, et al. Principle and model for regional allocation of carbon emission from electricity sector[J]. Power System Technology, 2012, 36(7): 12-18.
[48] 陈晓科, 周天睿, 李欣, 等. 电力系统的碳排放结构分解与低碳目标贡献分析[J]. 电力系统自动化, 2012, 36(2): 18-25.
[48] CHEN Xiaoke, ZHOU Tianrui, LI Xin, et al. Structure identification of CO2 emission for power system and analysis of its low-carbon contribution[J]. Automation of Electric Power Systems, 2012, 36(2): 18-25.
[49] 张孝顺, 郑理民, 余涛. 基于多步回溯Q(λ)学习的电网多目标最优碳流算法[J]. 电力系统自动化, 2014, 38(17): 118-123.
[49] ZHANG Xiaoshun, ZHENG Limin, YU Tao. Multi-objective optimal carbon emission flow calculation of power grid based on multi-step Q(λ)learning algorithm[J]. Automation of Electric Power Systems, 2014, 38(17): 118-123.
[50] 马瑞, 袁书林, 秦泽宇. 考虑风电不确定性的电力系统碳排放流分析[J]. 电力系统自动化, 2014, 38(17): 124-129.
[50] MA Rui, YUAN Shulin, QIN Zeyu. Analysis on carbon emission flow of power system with uncertain wind power injection[J]. Automation of Electric Power Systems, 2014, 38(17): 124-129.
[51] 罗一凡, 龚昱, 蒋传文, 等. 用户侧碳排放强度评级及绿色电力证书分配研究[J]. 水电能源科学, 2015, 33(10): 199-203.
[51] LUO Yifan, GONG Yu, JIANG Chuanwen, et al. Study on carbon emission intensity rating of power consumer side and green power certificates distribution[J]. Water Resources and Power, 2015, 33(10): 199-203.
[52] 马瑞, 曾婷, 陈元新, 等. 考虑碳捕集电厂的电力系统多目标最优潮流及其碳流分析[J]. 电力科学与技术学报, 2015, 30(1): 14-21.
[52] MA Rui, ZENG Ting, CHEN Yuanxin, et al. Analysis of carbon capture power plants-considered multi-objective optimal power flow and carbon flow for Power Systems[J]. Journal of Electric Power Science and Technology, 2015, 30(1): 14-21.
[53] 冯欣, 杨军. 考虑网络损耗的碳排放流理论改进与完善[J]. 电力自动化设备, 2016, 36(5): 81-86.
[53] FENG Xin, YANG Jun. Improvement and enhancement of carbon emission flow theory considering power loss[J]. Electric Power Automation Equipment, 2016, 36(5): 81-86.
[54] 陈达, 鲜文军, 吴涛, 等. 混合电力市场下碳排放流的分配[J]. 电网技术, 2016, 40(6): 1683-1688.
[54] CHEN Da, XIAN Wenjun, WU Tao, et al. Allocation of carbon emission flow in hybrid electricity market[J]. Power System Technology, 2016, 40(6): 1683-1688.
[55] 康重庆, 程耀华, 孙彦龙, 等. 电力系统碳排放流的递推算法[J]. 电力系统自动化, 2017, 41(18): 10-16.
[55] KANG Chongqing, CHENG Yaohua, SUN Yanlong, et al. Recursive calculation method of carbon emission flow in power systems[J]. Automation of Electric Power Systems, 2017, 41(18): 10-16.
[56] 李岩松, 刘启智, 张朕搏, 等. 基于电网功率分布的碳排放流计算方法[J]. 电网技术, 2017, 41(3): 840-844.
[56] LI Yansong, LIU Qizhi, ZHANG Zhenbo, et al. Algorithm of carbon emission flow based on power distribution[J]. Power System Technology, 2017, 41(3): 840-844.
[57] 陈丽霞, 孙弢, 周云, 等. 电力系统发电侧和负荷侧共同碳责任分摊方法[J]. 电力系统自动化, 2018, 42(19): 106-111.
[57] CHEN Lixia, SUN Tao, ZHOU Yun, et al. Method of carbon obligation allocation between generation side and demand side in power system[J]. Automation of Electric Power Systems, 2018, 42(19): 106-111.
[58] 陈艺璇, 张孝顺, 余涛. 基于纳什均衡迁移学习的碳-能复合流自律优化[J]. 控制理论与应用, 2018, 35(5): 668-681.
[58] CHEN Yixuan, ZHANG Xiaoshun, YU Tao. Nash equilibrium inspired transfer learning for self-organizing optimal carbon-energy combined-flow[J]. Control Theory & Applications, 2018, 35(5): 668-681.
[59] 周天睿, 康重庆. 基于碳排放流的配电系统低碳优化运行方法研究[J]. 全球能源互联网, 2019, 2(3): 241-247.
[59] ZHOU Tianrui, KANG Chongqing. Research on low-carbon oriented optimal operation of distribution networks based on carbon emission flow theory[J]. Journal of Global Energy Interconnection, 2019, 2(3): 241-247.
[60] 谭新, 刘昌义, 陈星, 等. 跨国电网互联情景下的碳流及碳减排效益研究: 以非洲能源互联网为例[J]. 全球能源互联网, 2019, 2(3): 210-217.
[60] TAN Xin, LIU Changyi, CHEN Xing, et al. Carbon flow and emission reduction benefits based on grid interconnection: A case study on Africa energy interconnection[J]. Journal of Global Energy Interconnection, 2019, 2(3): 210-217.
[61] CHENG Y H, ZHANG N, WANG Y, et al. Modeling carbon emission flow in multiple energy systems[J]. IEEE Transactions on Smart Grid, 2019, 10(4): 3562-3574.
[62] APPASANI B, JHA A, MISHRA S, et al. Communication infrastructure for situational awareness enhancement in WAMS with optimal PMU placement[J]. Protection and Control of Modern Power Systems, 2021, 6(1): 124-135.
[63] 林佳颖, 栾文鹏, 余贻鑫, 等. AMI量测用于配电网在线状态估计的可信度建模及分析[J]. 电网技术, 2018, 42(4): 1191-1200.
[63] LIN Jiaying, LUAN Wenpeng, YU Yixin, et al. Credibility modelling and analysis of AMI measurements for on-line distribution state estimation[J]. Power System Technology, 2018, 42(4): 1191-1200.
[64] 林佳颖, 秦超, 栾文鹏, 等. 考虑AMI量测特性的配电网状态估计[J]. 南方电网技术, 2016, 10(10): 3-10.
[64] LIN Jiaying, QIN Chao, LUAN Wenpeng, et al. Distribution network state estimation considering measurement characteristics of AMI[J]. Southern Power System Technology, 2016, 10(10): 3-10.
[65] 王琦, 邰伟, 汤奕, 等. 面向电力信息物理系统的虚假数据注入攻击研究综述[J]. 自动化学报, 2019, 45(1): 72-83.
[65] WANG Qi, TAI Wei, TANG Yi, et al. A review on false data injection attack toward cyber-physical power system[J]. Acta Automatica Sinica, 2019, 45(1): 72-83.
Outlines

/