Journal of Shanghai Jiaotong University >
Design and Implementation of a New Type of Gastrointestinal Robot Wireless Power Transmission System
Received date: 2021-06-25
Online published: 2022-08-26
In order to ensure the stable operation of the miniature gastrointestinal robot inside the human body, a new type of wireless power transmission (WPT) system is presented. To fulfill the requirements of the work energy consumption, posture stability, energy supply stability, and size limitation of the intestinal robot, the design refers to the calculation of electromagnetic field theory and the optimization results of the spindle-shaped three-dimensional receiving coil model which based on the principle of electromagnetic field resonance. Accordingly, the transmitting coil adopts four sets of solenoid coils to generate a uniform alternating magnetic field. With the receiving coil integrated inside, the optimized transmitting coil can generate a stable energy greater than 500 mW for a robot to work through mutual inductance. Relevant experimental verification indicates that performance of the wireless energy supply system satisfies the working requirements of the robot in the complex environment inside the intestine.
FU Wenhao, JIANG Pingping, YAN Guozheng, PENG Yuqi, FEI Qian, ZHUANG haoyu . Design and Implementation of a New Type of Gastrointestinal Robot Wireless Power Transmission System[J]. Journal of Shanghai Jiaotong University, 2022 , 56(8) : 1057 -1066 . DOI: 10.16183/j.cnki.jsjtu.2021.228
[1] | LIU X, HUI S Y R. Equivalent circuit modeling of a multilayer planar winding array structure for use in a universal contactless battery charging platform[J]. IEEE Transactions on Power Electronics, 2007, 22(1): 21-29. |
[2] | PURWADI A, HARIYANTO D, PRIBADI J, et al. Modelling and analysis of high frequency resonant inductive power transfer for electric vehicle charging system[C]// 2016 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW). Knoxville, TN, USA: IEEE, 2016: 214-220. |
[3] | GAO J Y, ZHANG Z L, YAN G Z. Development of a capsule robot for exploring the colon[J]. Micromachines, 2019, 10(7): 456. |
[4] | 蒲鹏先, 颜国正, 王志武, 等. 微型肠道机器人扩张机构与能量接收线圈的设计与实验[J]. 上海交通大学学报, 2019, 53(10): 1143-1150. |
[4] | PU Pengxian, YAN Guozheng, WANG Zhiwu, et al. Design and experiment of expanding mechanism and power receiving coil for micro intestinal robot[J]. Journal of Shanghai Jiao Tong University, 2019, 53(10): 1143-1150. |
[5] | 温桠妮, 颜国正, 王志武, 等. 肠道机器人三维接收线圈的设计与优化[J]. 上海交通大学学报, 2020, 54(11): 1117-1123. |
[5] | WEN Yani, YAN Guozheng, WANG Zhiwu, et al. Design and optimization of three-dimensional receiving coils for intestinal robots[J]. Journal of Shanghai Jiao Tong University, 2020, 54(11): 1117-1123. |
[6] | BASAR M R, AHMAD M Y, CHO J, et al. An improved wearable resonant wireless power transfer system for biomedical capsule endoscope[J]. IEEE Transactions on Industrial Electronics, 2018, 65(10): 7772-7781. |
[7] | 石煜, 颜国正, 朱柄全. 视频胶囊内窥镜无线能量接收系统的设计[J]. 仪器仪表学报, 2014, 35(3): 703-708. |
[7] | SHI Yu, YAN Guozheng, ZHU Bingquan. Design of wireless power receiving system for video capsule endoscope[J]. Chinese Journal of Scientific Instrument, 2014, 35(3): 703-708. |
[8] | 石煜, 颜国正, 朱柄全. 胶囊内窥镜便携式无线能量发射系统[J]. 光学精密工程, 2014, 22(1): 132-137. |
[8] | SHI Yu, YAN Guozheng, ZHU Bingquan. Portable wireless power transmitting system for video capsule endoscopes[J]. Optics and Precision Engineering, 2014, 22(1): 132-137. |
[9] | 柯全. 微型肠道机器人诊查系统及其无线能量传输技术[D]. 上海: 上海交通大学, 2017. |
[9] | KE Quan. The research of a micro robot system for intestinal diseases diagnoses and its wireless power transmission technology[D]. Shanghai: Shanghai Jiao Tong University, 2017. |
[10] | 李达伟. 基于无线供能的肠道机器人及其实验研究[D]. 上海: 上海交通大学, 2018. |
[10] | LI Dawei. Research on wireless power transfer of endoscope robot and its experiments[D]. Shanghai: Shanghai Jiao Tong University, 2018. |
[11] | 朱桂萍, 于歆杰, 陆文娟. 电路原理[M]. 北京: 高等教育出版社, 2016. |
[11] | ZHU Guiping, YU Xinjie, LU Wenjuan. Principles of circuits[M]. Beijing: Higher Education Press, 2016. |
[12] | 李达伟, 姜萍萍, 柯全, 等. 肠道机器人无线能量发射系统优化设计[J]. 上海交通大学学报, 2018, 52(9): 1031-1037. |
[12] | LI Dawei, JIANG Pingping, KE Quan, et al. Optimal design of wireless power transfer system for gastrointestinal robots[J]. Journal of Shanghai Jiao Tong University, 2018, 52(9): 1031-1037. |
[13] | ZHOU Z R, YAN G Z, WANG Z W, et al. A novel power supply system for puborectalis-like artificial anal sphincter[J]. Artificial Organs, 2019, 43(6): 109-123. |
[14] | 张学斌. 一种正方形亥姆霍兹线圈的设计[J]. 电子世界, 2016(11): 135-136. |
[14] | ZHANG Xuebin. A design of a square Helmholtz coil[J]. Electronics World, 2016(11): 135-136. |
[15] | 莫云飞, 周群益, 侯兆阳, 等. 通电螺线管磁场的双重数值积分法和可视化[J]. 湖南文理学院学报(自然科学版), 2020, 32(4): 20-26. |
[15] | MO Yunfei, ZHOU Qunyi, HOU Zhaoyang, et al. Calculating the magnetic filed of current solenoid according to a double numerical integral and its visualization[J]. Journal of Hunan University of Arts and Science (Science and Technology), 2020, 32(4): 20-26. |
[16] | GAO J Y, YAN G Z, WANG Z W, et al. A capsule robot powered by wireless power transmission: Design of its receiving coil[J]. Sensors and Actuators A: Physical, 2015, 234: 133-142. |
[17] | SULLIVAN C R, ZHANG R Y. Simplified design method for litz wire[C]// 2014 IEEE Applied Power Electronics Conference and Exposition-APEC 2014. Fort Worth, TX, USA: IEEE, 2014: 2667-2674. |
[18] | 姜萍萍, 付文浩, 王志武, 等. 用于胃肠道微型机器人的组合螺线管式无线能量发射系统研究[J]. 仪器仪表学报, 2021, 42(2): 114-122. |
[18] | JIANG Pingping, FU Wenhao, WANG Zhiwu, et al. Research on combined solenoid wireless power transmitting system for gastrointestinal micro-robot[J]. Chinese Journal of Scientific Instrument, 2021, 42(2): 114-122. |
/
〈 |
|
〉 |