New Type Power System and the Integrated Energy

Voltage and Frequency Suppression of Intentional Islanding Restoration Process for Distribution System with Multi-Generations

Expand
  • 1. School of Electrical and Information Engineering, Changsha University of Science and Technology, Changsha 410114, China
    2. Changyuan Shenrui Relay Automation Co., Ltd., Shenzhen 518057, Guangdong, China

Received date: 2021-12-08

  Online published: 2022-06-07

Abstract

Intentional islanding restoration of distribution systems with multi-generations is of great importance to ensure the power supply of critical loads under extreme conditions, which is beneficial to improve the reliability of distribution systems. There are transient voltage and frequency fluctuations in the process of intentional islanding restoration, when the loads and distributed generations are gradually connected to the grid. The safety and stability of the intentional islanding are affected by the fluctuations, and networking process may fail in serious cases. Hence, the rapid power response of the energy storage system is utilized to suppress voltage and frequency fluctuations. A fluctuation suppression model based on energy storage system control is established, where a voltage and current double-loop feed-forward disturbance compensation control system is designed. A vector control method for energy storage system with improved dual-loop control is proposed, which solves the problems of traditional V/f control voltage offset and excessive voltage fluctuation. MATLAB/Simulink is used to build simulation models in different control modes in accordance with the black-start principle. The simulation results show that the improved double-loop control based on the vector method has a stronger anti-interference ability and significantly improved the islanding black-start self-organizing networking process. Voltage and frequency fluctuations are reduced, and the dynamic response performance of the system is improved.

Cite this article

CHEN Chun, GAO Jing, CAO Yijia, WANG Weiyu, ZHAO Long . Voltage and Frequency Suppression of Intentional Islanding Restoration Process for Distribution System with Multi-Generations[J]. Journal of Shanghai Jiaotong University, 2022 , 56(5) : 543 -553 . DOI: 10.16183/j.cnki.jsjtu.2021.418

References

[1] 陈春, 吴宜桐, 李锰, 等. 基于网络拓扑有向遍历的配电网故障快速恢复方法[J]. 电力系统自动化, 2021, 45(7): 44-52.
[1] CHEN Chun, WU Yitong, LI Meng, et al. Method for fast recovery from distribution network fault based on directed traversal of network topology[J]. Automation of Electric Power Systems, 2021, 45(7): 44-52.
[2] 赵昱宣, 孙磊, 林振智, 等. 微网作为黑启动电源的电力系统网架重构优化策略[J]. 电力系统自动化, 2018, 42(17): 9-17.
[2] ZHAO Yuxuan, SUN Lei, LIN Zhenzhi, et al. Power network reconfiguration strategy with microgrids as black-start power sources[J]. Automation of Electric Power Systems, 2018, 42(17): 9-17.
[3] ZHANG B, DEHGHANIAN P, KEZUNOVIC M. Optimal allocation of PV generation and battery storage for enhanced resilience[J]. IEEE Transactions on Smart Grid, 2019, 10(1): 535-545.
[4] 杨丽君, 卢志刚, 文莹. 含异步风电机组的配电网故障恢复研究[J]. 电网技术, 2010, 34(2): 133-137.
[4] YANG Lijun, LU Zhigang, WEN Ying. Fault recovery of distribution network containing asynchronous wind power generation units[J]. Power System Technology, 2010, 34(2): 133-137.
[5] 廖旭明, 童家鹏, 余涛. 微型燃气轮机发电系统在城市电网黑启动中的运用[J]. 电力系统保护与控制, 2009, 37(10): 83-88.
[5] LIAO Xuming, TONG Jiapeng, YU Tao. Use of microturbine generation system for power system black-start[J]. Power System Protection and Control, 2009, 37(10): 83-88.
[6] 牟龙华, 夏明栋, 刘仲. 孤立微网中微源的黑启动能力[J]. 同济大学学报(自然科学版), 2015, 43(12): 1877-1882.
[6] MU Longhua, XIA Mingdong, LIU Zhong. Research on black-start capability of microsources in isolated microgrid[J]. Journal of Tongji University (Natural Science), 2015, 43(12): 1877-1882.
[7] 李军徽, 尤宏飞, 李翠萍, 等. 基于模型预测控制的风光储黑启动功率协调策略[J]. 电网技术, 2020, 44(10): 3700-3708.
[7] LI Junhui, YOU Hongfei, LI Cuiping, et al. Power coordination strategy based on model predictive control for black start with PV-wind-battery system[J]. Power System Technology, 2020, 44(10): 3700-3708.
[8] 刘力卿, 杜平, 万玉良, 等. 储能型风电场作为局域电网黑启动电源的可行性探讨[J]. 电力系统自动化, 2016, 40(21): 210-216.
[8] LIU Liqing, DU Ping, WAN Yuliang, et al. Feasibility discussion on using storage-based wind farm as black-start power source in local power grid[J]. Automation of Electric Power Systems, 2016, 40(21): 210-216.
[9] 冷亚军, 吴宗育, 赵文会, 等. 基于近邻传播聚类权重的黑启动方案评估方法[J]. 电力系统自动化, 2020, 44(13): 73-80.
[9] LENG Yajun, WU Zongyu, ZHAO Wenhui, et al. Assessment method of black-start scheme based on affinity propagation clustering weight[J]. Automation of Electric Power Systems, 2020, 44(13): 73-80.
[10] 王大江, 顾雪平, 贾京华. 一种扩展黑启动方案恢复效果的评估方法[J]. 电网技术, 2014, 38(12): 3360-3365.
[10] WANG Dajiang, GU Xueping, JIA Jinghua. A method to access restoration effect of extended black-start scheme[J]. Power System Technology, 2014, 38(12): 3360-3365.
[11] 谢夏慧, 汪沨, 卢鸣凯, 等. 大停电后初期基于分布式电源的配电网局部自我恢复方案[J]. 电网技术, 2013, 37(7): 1834-1840.
[11] XIE Xiahui, WANG Feng, LU Mingkai, et al. A distributed generation-based local self-recovery scheme for distribution network at post-blackout early stage of power grid restoration[J]. Power System Technology, 2013, 37(7): 1834-1840.
[12] CHEN B, CHEN C, WANG J H, et al. Multi-time step service restoration for advanced distribution systems and microgrids[J]. IEEE Transactions on Smart Grid, 2018, 9(6): 6793-6805.
[13] 李振坤, 周伟杰, 钱啸, 等. 有源配电网孤岛恢复供电及黑启动策略研究[J]. 电工技术学报, 2015, 30(21): 67-75.
[13] LI Zhenkun, ZHOU Weijie, QIAN Xiao, et al. Distribution network restoration and black start based on distributed generators[J]. Transactions of China Electrotechnical Society, 2015, 30(21): 67-75.
[14] 黄杏, 金新民, 马琳. 微网离网黑启动优化控制方案[J]. 电工技术学报, 2013, 28(4): 182-190.
[14] HUANG Xing, JIN Xinmin, MA Lin. An optimized island micro-grid black-start control method[J]. Transactions of China Electrotechnical Society, 2013, 28(4): 182-190.
[15] 许志荣, 杨苹, 曾智基, 等. 单三相光储型多微网黑启动恢复策略[J]. 控制理论与应用, 2017, 34(8): 1112-1119.
[15] XU Zhirong, YANG Ping, ZENG Zhiji, et al. Black start strategy for photovoltaic energy storage system multi-microgrids with three-phase/single-phase[J]. Control Theory & Applications, 2017, 34(8): 1112-1119.
[16] 汪亮, 彭勇刚, 吴韬, 等. 光储交流微电网孤岛模式下的改进型主从控制[J]. 高电压技术, 2020, 46(10): 3530-3541.
[16] WANG Liang, PENG Yonggang, WU Tao, et al. Improved master-slave control for islanded AC microgrid with PV and energy storage systems[J]. High Voltage Engineering, 2020, 46(10): 3530-3541.
[17] MORSTYN T, HREDZAK B, AGELIDIS V G. Control strategies for microgrids with distributed energy storage systems: An overview[J]. IEEE Transactions on Smart Grid, 2018, 9(4): 3652-3666.
[18] MORSTYN T, HREDZAK B, AGELIDIS V G. Distributed cooperative control of microgrid storage[J]. IEEE Transactions on Power Systems, 2015, 30(5): 2780-2789.
[19] CHEN X, SHI M X, ZHOU J Y, et al. Consensus-based distributed control for photovoltaic-battery units in a DC microgrid[J]. IEEE Transactions on Industrial Electronics, 2019, 66(10): 7778-7787.
[20] ZHANG R F, HREDZAK B. Distributed finite-time multiagent control for DC microgrids with time delays[J]. IEEE Transactions on Smart Grid, 2019, 10(3): 2692-2701.
[21] 关雅娟, 邬伟扬, 郭小强. 微电网中三相逆变器孤岛运行控制技术[J]. 中国电机工程学报, 2011, 31(33): 52-60.
[21] GUAN Yajuan, WU Weiyang, GUO Xiaoqiang. Control strategy for three-phase inverters dominated microgrid in autonomous operation[J]. Proceedings of the CSEE, 2011, 31(33): 52-60.
[22] 李振, 盛万兴, 段青, 等. 基于储能稳压的交直流混合电能路由器协调控制策略[J]. 电力系统自动化, 2019, 43(2): 121-129.
[22] LI Zhen, SHENG Wanxing, DUAN Qing, et al. Coordinated control strategy of AC/DC hybrid power router based on voltage stabilization by energy storage[J]. Automation of Electric Power Systems, 2019, 43(2): 121-129.
[23] 宁阳天, 李相俊, 董德华, 等. 储能系统平抑风光发电出力波动的研究方法综述[J]. 供用电, 2017, 34(4): 2-11.
[23] NING Yangtian, LI Xiangjun, DONG Dehua, et al. A review of the research methods of smoothing wind/PV power output with energy storage systems[J]. Distribution & Utilization, 2017, 34(4): 2-11.
[24] 谢俊文, 陆继明, 毛承雄, 等. 基于变平滑时间常数的电池储能系统优化控制方法[J]. 电力系统自动化, 2013, 37(1): 96-102.
[24] XIE Junwen, LU Jiming, MAO Chengxiong, et al. Optimal control of battery energy storage system based on variable smoothing time constant[J]. Automation of Electric Power Systems, 2013, 37(1): 96-102.
[25] 张卫东, 刘祖明, 申兰先. 利用储能平抑波动的光伏柔性并网研究[J]. 电力自动化设备, 2013, 33(5): 106-111.
[25] ZHANG Weidong, LIU Zuming, SHEN Lanxian. Flexible grid-connection of photovoltaic power generation system with energy storage system for fluctuation smoothing[J]. Electric Power Automation Equipment, 2013, 33(5): 106-111.
[26] 马伟, 王玮, 吴学智, 等. 光储协调互补平抑功率波动策略及经济性分析[J]. 电网技术, 2018, 42(3): 730-737.
[26] MA Wei, WANG Wei, WU Xuezhi, et al. Coordinated control strategy of photovoltaics and energy storage for smoothing power fluctuations of photovoltaics and economic analysis[J]. Power System Technology, 2018, 42(3): 730-737.
[27] 李鑫卓. 微电网运行控制与黑启动策略研究[D]. 广州: 华南理工大学, 2019.
[27] LI Xinzhuo. Research on operation control and black start strategy of microgrid[D]. Guangzhou: South China University of Technology, 2019.
[28] 贾科, 林瑶琦, 陈奕汝, 等. 基于储能实时修正双环控制的微电网能量管理方法[J]. 电力系统自动化, 2018, 42(14): 131-138.
[28] JIA Ke, LIN Yaoqi, CHEN Yiru, et al. Energy management method for microgrid based on real-time corrected double-loop control of energy storage[J]. Automation of Electric Power Systems, 2018, 42(14): 131-138.
[29] 武文平, 崔扬, 颜湘武. 分布式微电网自同步电压源并列运行策略[J]. 电力系统保护与控制, 2020, 48(12): 107-117.
[29] WU Wenping, CUI Yang, YAN Xiangwu. Operation strategy of parallel self-synchronizing voltage sources in a distributed microgrid[J]. Power System Protection and Control, 2020, 48(12): 107-117.
Outlines

/