New Type Power System and the Integrated Energy

A Dual Cooperative Optimization for Optimal Redundancy Quantity of MMC Submodules of Flexible Controller

Expand
  • 1. State Grid Jiangsu Electric Power Co., Ltd., Nanjing 210019, China
    2. Key Laboratory of Control of Power Transmission and Conversion of the Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2021-11-04

  Online published: 2022-04-01

Abstract

The failure of modular multilevel converter (MMC) submodules in the flexible direct current (DC) system affects the normal operation of the system, and the mutual restriction of reliability and economy is one of the key issues of MMC redundancy configuration optimization. A multi-objective optimization function of MMC reliability and economy mathematical model with redundant submodules was established. Based on the weight coefficient and NSGAII multi-objective optimization methods, a dual collaborative optimization for redundancy quantity of flexible controller was proposed. Combining the advantages of the two methods, the intersection of the two optimization results was calculated under the same redundancy quantity selection preference. A model based on a DC project in a flexible station area of Nanjing was built in MATLAB. The simulation results prove that the proposed method can not only meet the reliability of the flexible DC system, but also significantly improve the economy. It provides ideas for redundancy quantity of MMC submodules in the actual flexible DC project.

Cite this article

MA Zhoujun, WANG Yong, WANG Jie, CHEN Shaoyu . A Dual Cooperative Optimization for Optimal Redundancy Quantity of MMC Submodules of Flexible Controller[J]. Journal of Shanghai Jiaotong University, 2022 , 56(3) : 325 -332 . DOI: 10.16183/j.cnki.jsjtu.2021.444

References

[1] FLOURENTZOU N, AGELIDIS V G, DEMETRIADES G D. VSC-based HVDC power transmission systems: An overview[J]. IEEE Transactions on Power Electronics, 2009, 24(3):592-602.
[2] HARNEFORS L, ANTONOPOULOS A, NORRGA S, et al. Dynamic analysis of modular multilevel converters[J]. IEEE Transactions on Industrial Electronics, 2013, 60(7):2526-2537.
[3] HAGIWARA M, AKAGI H. Control and experiment of pulsewidth-modulated modular multilevel converters[J]. IEEE Transactions on Power Electronics, 2009, 24(7):1737-1746.
[4] 宋平岗, 李云丰, 王立娜. 无锁相环模块化多电平换流器直接功率控制器设计[J]. 高电压技术, 2014, 40(11):3500-3505.
[4] SONG Pinggang, LI Yunfeng, WANG Lina. Design of direct power controller for modular multilevel converter without phase lock loop[J]. High Voltage Engineering, 2014, 40(11):3500-3505.
[5] 马为民, 吴方劼, 杨一鸣, 等. 柔性直流输电技术的现状及应用前景分析[J]. 高电压技术, 2014, 40(8):2429-2439.
[5] MA Weimin, WU Fangjie, YANG Yiming, et al. Flexible HVDC transmission technology's today and tomorrow[J]. High Voltage Engineering, 2014, 40(8):2429-2439.
[6] 赵昕, 赵成勇, 李广凯, 等. 采用载波移相技术的模块化多电平换流器电容电压平衡控制[J]. 中国电机工程学报, 2011, 31(21):48-55.
[6] ZHAO Xin, ZHAO Chengyong, LI Guangkai, et al. Submodule capacitance voltage balancing of modular multilevel converter based on carrier phase shifted SPWM technique[J]. Proceedings of the CSEE, 2011, 31(21):48-55.
[7] 许建中, 赵成勇. 模块化多电平换流器电容电压优化平衡控制算法[J]. 电网技术, 2012, 36(6):256-261.
[7] XU Jianzhong, ZHAO Chengyong. An optimized capacitance voltage balancing algorithm for modularized multilevel converter[J]. Power System Technology, 2012, 36(6):256-261.
[8] 韦延方, 卫志农, 孙国强, 等. 适用于电压源换流器型高压直流输电的模块化多电平换流器最新研究进展[J]. 高电压技术, 2012, 38(5):1243-1252.
[8] WEI Yanfang, WEI Zhinong, SUN Guoqiang, et al. New prospects of modular multilevel converter applied to voltage source converter high voltage direct current transmission[J]. High Voltage Engineering, 2012, 38(5):1243-1252.
[9] 陈宁, 齐磊, 包萌, 等. 模块化多电平换流器的桥臂平均值模型[J]. 中国电力, 2019, 52(8):8-15.
[9] CHEN Ning, QI Lei, BAO Meng, et al. Bridge average value model of modular multilevel converter[J]. Electric Power, 2019, 52(8):8-15.
[10] 顾益磊, 唐庚, 黄晓明, 等. 含多端柔性直流输电系统的交直流电网动态特性分析[J]. 电力系统自动化, 2013, 37(15):27-34.
[10] GU Yilei, TANG Geng, HUANG Xiaoming, et al. Dynamic characteristic analysis of hybrid AC/DC power grid with multi-terminal HVDC based on modular multilevel converter[J]. Automation of Electric Power Systems, 2013, 37(15):27-34.
[11] 李亚男, 蒋维勇, 余世峰, 等. 舟山多端柔性直流输电工程系统设计[J]. 高电压技术, 2014, 40(8):2490-2496.
[11] LI Yanan, JIANG Weiyong, YU Shifeng, et al. System design of Zhoushan multi-terminal VSC-HVDC transmission project[J]. High Voltage Engineering, 2014, 40(8):2490-2496.
[12] 饶宏, 宋强, 刘文华, 等. 多端MMC直流输电系统的优化设计方案及比较[J]. 电力系统自动化, 2013, 37(15):103-108.
[12] RAO Hong, SONG Qiang, LIU Wenhua, et al. Optimized design solutions for multi-terminal VSC-HVDC system using modular multilevel converters and their comparison[J]. Automation of Electric Power Systems, 2013, 37(15):103-108.
[13] 郑超, 滕松, 宋新立, 等. 百万千瓦级柔性直流接入大连电网后的系统特性分析[J]. 电力系统自动化, 2013, 37(15):15-19.
[13] ZHENG Chao, TENG Song, SONG Xinli, et al. Analysis on system characteristics after incorporation of ±320 kV/1000 MW VSC-HVDC into Dalian power grid[J]. Automation of Electric Power Systems, 2013, 37(15):15-19.
[14] PEREZ M A, BERNET S, RODRIGUEZ J, et al. Circuit topologies, modeling, control schemes, and applications of modular multilevel converters[J]. IEEE Transactions on Power Electronics, 2015, 30(1):4-17.
[15] GUAN M Y, XU Z. Modeling and control of a modular multilevel converter-based HVDC system under unbalanced grid conditions[J]. IEEE Transactions on Power Electronics, 2012, 27(12):4858-4867.
[16] DEBNATH S, QIN J C, BAHRANI B, et al. Operation, control, and applications of the modular multilevel converter: A review[J]. IEEE Transactions on Power Electronics, 2015, 30(1):37-53.
[17] 李爽, 王志新, 吴杰. 采用基频零序分量注入的MMC换流器故障容错控制研究[J]. 电力系统保护与控制, 2014, 42(17):1-7.
[17] LI Shuang, WANG Zhixin, WU Jie. Study on fault-tolerant operation control strategy of modular multilevel converters injected with fundamental-frequency zero-sequence voltage component[J]. Power System Protection and Control, 2014, 42(17):1-7.
[18] 王朝亮, 赵成勇, 许建中. 模块化多电平换流器的子模块冗余配置计算方法[J]. 电力系统自动化, 2013, 37(16):103-107.
[18] WANG Chaoliang, ZHAO Chengyong, XU Jianzhong. A method for calculating sub-module redundancy configurations in modular multilevel converters[J]. Automation of Electric Power Systems, 2013, 37(16):103-107.
[19] 王宝安, 谭风雷, 商姣. 模块化多电平换流器模块冗余优化配置方法[J]. 电力自动化设备, 2015, 35(1):13-19.
[19] WANG Baoan, TAN Fenglei, SHANG Jiao. Optimal configuration of modular redundancy for MMC[J]. Electric Power Automation Equipment, 2015, 35(1):13-19.
[20] 许建中, 赵鹏豪, 江伟, 等. 具备直流故障穿越能力的混合MMC可靠性分析和冗余配置方法[J]. 中国电机工程学报, 2016, 36(4):953-959.
[20] XU Jianzhong, ZHAO Penghao, JIANG Wei, et al. Reliability analysis and redundancy configuration of hybrid MMCs with DC fault blocking capability[J]. Proceedings of the CSEE, 2016, 36(4):953-959.
[21] 王秀丽, 郭静丽, 庞辉, 等. 模块化多电平换流器的结构可靠性分析[J]. 中国电机工程学报, 2016, 36(7):1908-1914.
[21] WANG Xiuli, GUO Jingli, PANG Hui, et al. Structural reliability analysis of modular multi-level converters[J]. Proceedings of the CSEE, 2016, 36(7):1908-1914.
[22] 黄守道, 付雪婷, 饶宏, 等. 基于Semi-Markov的模块化多电平换流器的可靠性分析及其冗余配置策略[J]. 电力自动化设备, 2018, 38(7):128-133.
[22] HUANG Shoudao, FU Xueting, RAO Hong, et al. Reliability analysis and redundant configuration strategy of MMC based on Semi-Markov[J]. Electric Power Automation Equipment, 2018, 38(7):128-133.
[23] 李辉, 邓吉利, 姚然, 等. 计及运行工况的MMC换流阀可靠性建模与分析[J]. 电力自动化设备, 2018, 38(10):108-114.
[23] LI Hui, DENG Jili, YAO Ran, et al. Reliability modeling and analysis of MMC converter valve considering operation conditions[J]. Electric Power Automation Equipment, 2018, 38(10):108-114.
[24] 全少理, 薛俞, 李秋燕, 等. 基于贝叶斯网络柔性多状态开关可靠性建模与分析[J]. 华北电力大学学报(自然科学版), 2019, 46(5):25-35.
[24] QUAN Shaoli, XUE Yu, LI Qiuyan, et al. Modeling and analysis of the reliability of flexible multiple state switch based on Bayesian network method[J]. Journal of North China Electric Power University (Natural Science Edition), 2019, 46(5):25-35.
[25] 朱晋, 韦统振, 霍群海. A2MC VSC-HVDC系统可靠性分析与冗余度优化研究[J]. 电工技术学报, 2013, 28(Sup.2):319-323.
[25] ZHU Jin, WEI Tongzhen, HUO Qunhai. Reliability model analysis and redundancy design of A2MC VSC-HVDC power transmission system[J]. Transactions of China Electrotechnical Society, 2013, 28(Sup.2):319-323.
[26] XU J Z, ZHAO P H, ZHAO C Y. Reliability analysis and redundancy configuration of MMC with hybrid submodule topologies[J]. IEEE Transactions on Power Electronics, 2016, 31(4):2720-2729.
Outlines

/