Journal of Shanghai Jiaotong University >
Optimization of Active Distribution Network Operation Considering Decarbonization Endowment from 5G Base Stations
Received date: 2021-09-23
Online published: 2022-04-01
The massive access of 5G base stations (5G BSs) provides new possibilities for the low-carbon development of future power systems. By incentivizing 5G BSs to participate in demand response and incorporating them into the existing active distribution network (ADN) operation framework, the cost of the electricity consumption of 5G BSs can be reduced while promoting the consumption and efficient use of renewable energy sources (RES). This paper proposes a multi-objective interval optimization model for ADN operation considering low-carbon empowerment of 5G BSs. Based on the interaction mode between 5G BSs and the distribution network, a 5G BSs operating flexibility description model is constructed, and the system dynamics method is used to reveal the mechanism of 5G BSs on carbon emission reduction on the distribution side. Taking the minimization of system operating cost and carbon emissions as the goals, and considering the constraints for both the distribution network and the communication network, a multi-objective optimization model for ADN operation with 5G BSs is established. The model cooptimizes the dispatch of RES and 5G equipment, and adopts an interval method to consider the uncertainty of RES output and communication loads, which can achieve simultaneous optimization of system economy and low-carbon benefits. Combining the equivalent transformation and the non-dominated sorting genetic algorithm to solve the problem, the results of numerical studies prove the effectiveness of the proposed method.
ZENG Bo, MU Hongwei, DONG Houqi, ZENG Ming . Optimization of Active Distribution Network Operation Considering Decarbonization Endowment from 5G Base Stations[J]. Journal of Shanghai Jiaotong University, 2022 , 56(3) : 279 -292 . DOI: 10.16183/j.cnki.jsjtu.2021.367
[1] | 习近平. 习近平在第七十五届联合国大会一般性辩论上发表重要讲话[EB/OL]. (2020-09-22)[2021-06-25]. http://www.xinhuanet.com/politics/2020-09/22/c_1126527647.htm |
[1] | XI Jinping. Xi Jinping delivers an important speech at the general debate of the 75th U.N. General Assembly[EB/OL]. (2020-09-22)[2021-06-25]. http://www.xinhuanet.com/politics/2020-09/22/c_1126527647.htm http://www.xinhuanet.com/politics/2020-09/22/c_1126527647.htm. |
[2] | 张建华, 曾博, 张玉莹, 等. 主动配电网规划关键问题与研究展望[J]. 电工技术学报, 2014, 29(2):13-23. |
[2] | ZHANG Jianhua, ZENG Bo, ZHANG Yuying, et al. Key issues and research prospects of active distribution network planning[J]. Transactions of China Electrotechnical Society, 2014, 29(2):13-23. |
[3] | 徐熙林, 宋依群, 姚良忠, 等. 主动配电网源-荷-储分布式协调优化运行(一): 基于一致性理论的分布式协调控制系统建模[J]. 中国电机工程学报, 2018, 38(10):2841-2848. |
[3] | XU Xilin, SONG Yiqun, YAO Liangzhong, et al. Source-load-storage distributed coordinative optimization of ADN (Part Ⅰ): Consensus based distributed coordination system modeling[J]. Proceedings of the CSEE, 2018, 38(10):2841-2848. |
[4] | 中国电子信息产业发展研究院. 5G融合应用发展白皮书(2020) [EB/OL]. (2020-12-04) [2021-06-25]. http://www.xinhuanet.com/tech/2020-12/04/c_1126821689.htm |
[4] | China Center for Information Industry Development. White paper on 5G application development(2020) [EB/OL]. (2020-12-04) [2021-06-25]. http://www.xinhuanet.com/tech/2020-12/04/c_1126821689.htm |
[5] | 雍培, 张宁, 慈松, 等 5G融合应用发展白皮书(2020) [DB/OL].(2021-04-06)[2021-06-25]. https://doi.org/10.13334/j.0258-8013.pcsee.210183 . |
[5] | YONG Pei, ZHANG Ning, CI Song, et al. 5G communication base stations participating in demand response: Key technologies and prospects[DB/OL].(2021-04-06)[2021-06-25]. https://doi.org/10.13334/j.0258-8013.pcsee.210183 . |
[6] | 符杨, 廖剑波, 李振坤, 等. 考虑越限风险的主动配电网日前优化调度及运行[J]. 中国电机工程学报, 2017, 37(21):6328-6338. |
[6] | FU Yang, LIAO Jianbo, LI Zhenkun, et al. Day-ahead optimal scheduling and operating of active distribution network considering violation risk[J]. Proceedings of the CSEE, 2017, 37(21):6328-6338. |
[7] | 肖浩, 裴玮, 孔力. 含大规模电动汽车接入的主动配电网多目标优化调度方法[J]. 电工技术学报, 2017, 32(Sup.2):179-189. |
[7] | XIAO Hao, PEI Wei, KONG Li. Multi-objective optimization scheduling method for active distribution network with large scale electric vehicles[J]. Transactions of China Electrotechnical Society, 2017, 32(Sup.2):179-189. |
[8] | 黄伟, 李宁坤, 李玟萱, 等. 考虑多利益主体参与的主动配电网双层联合优化调度[J]. 中国电机工程学报, 2017, 37(12):3418-3428. |
[8] | HUANG Wei, LI Ningkun, LI Wenxuan, et al. Bi-level joint optimization dispatch of active distribution network considering the participation of multi-stakeholder[J]. Proceedings of the CSEE, 2017, 37(12):3418-3428. |
[9] | 曾博, 杨煦, 张建华. 考虑可再生能源跨区域消纳的主动配电网多目标优化调度[J]. 电工技术学报, 2016, 31(22):148-158. |
[9] | ZENG Bo, YANG Xu, ZHANG Jianhua. Multi-objective optimization for active distribution network scheduling considering renewable energy harvesting across regions[J]. Transactions of China Electrotechnical Society, 2016, 31(22):148-158. |
[10] | 徐崇博, 杨晓东, 张有兵, 等. 考虑风险管控的含智能软开关主动配电网随机运行优化方法[J]. 电力系统自动化, 2021, 45(11):68-76. |
[10] | XU Chongbo, YANG Xiaodong, ZHANG Youbing, et al. Stochastic operation optimization method for active distribution networks with soft open point considering risk management and control[J]. Automation of Electric Power Systems, 2021, 45(11):68-76. |
[11] | 梁俊文, 林舜江, 刘明波, 等. 主动配电网分布式鲁棒优化调度方法[J]. 电网技术, 2019, 43(4):1336-1344. |
[11] | LIANG Junwen, LIN Shunjiang, LIU Mingbo, et al. Distributed robust optimal dispatch in active distribution networks[J]. Power System Technology, 2019, 43(4):1336-1344. |
[12] | GONG D W, SUN J, JI X F. Evolutionary algorithms with preference polyhedron for interval multi-objective optimization problems[J]. Information Sciences, 2013, 233:141-161. |
[13] | SUN J, MIAO Z, GONG D W, et al. Interval multiobjective optimization with memetic algorithms[J]. IEEE Transactions on Cybernetics, 2020, 50(8):3444-3457. |
[14] | RENGA D, AL HAJ HASSAN H, MEO M, et al. Energy management and base station on/off switching in green mobile networks for offering ancillary services[J]. IEEE Transactions on Green Communications and Networking, 2018, 2(3):868-880. |
[15] | 曾博, 杨雍琦, 段金辉, 等. 新能源电力系统中需求侧响应关键问题及未来研究展望[J]. 电力系统自动化, 2015, 39(17):10-18. |
[15] | ZENG Bo, YANG Yongqi, DUAN Jinhui, et al. Key issues and research prospects for demand-side response in alternate electrical power systems with renewable energy sources[J]. Automation of Electric Power Systems, 2015, 39(17):10-18. |
[16] | 刘友波, 王晴, 曾琦, 等. 能源互联网背景下5G网络能耗管控关键技术及展望[J]. 电力系统自动化, 2021, 45(12):174-183. |
[16] | LIU Youbo, WANG Qing, ZENG Qi, et al. Key technologies and prospects of energy consumption management for 5G network in background of energy internet[J]. Automation of Electric Power Systems, 2021, 45(12):174-183. |
[17] | 谈金晶, 王蓓蓓, 李扬. 系统动力学在需求响应综合效益评估中的应用[J]. 电力系统自动化, 2014, 38(13):128-134. |
[17] | TAN Jinjing, WANG Beibei, LI Yang. Application of system dynamics on comprehensive benefits valuation of demand response[J]. Automation of Electric Power Systems, 2014, 38(13):128-134. |
[18] | MESODIAKAKI A, ZOLA E, SANTOS R, et al. Optimal user association, backhaul routing and switching off in 5G heterogeneous networks with mesh millimeter wave backhaul links[J]. Ad Hoc Networks, 2018, 78:99-114. |
[19] | FISUSI A, GRACE D, MITCHELL P. Energy saving in a 5G separation architecture under different power model assumptions[J]. Computer Communications, 2017, 105:89-104. |
[20] | ADACHI K, JOUNG J, SUN S M, et al. Adaptive coordinated napping for energy saving in wireless networks[J]. IEEE Transactions on Wireless Communications, 2013, 12(11):5656-5667. |
[21] | WANG Q, ZHAO X, LV Z, et al. Optimizing the ultra-dense 5G base stations in urban outdoor areas: Coupling GIS and heuristic optimization[J]. Sustainable Cities and Society, 2020, 63:102445. |
[22] | HE Y F, VENKATESH B, GUAN L. Optimal scheduling for charging and discharging of electric vehicles[J]. IEEE Transactions on Smart Grid, 2012, 3(3):1095-1105. |
[23] | LIU D T, CHEN Y, CHAI K K, et al. Optimal user association for delay-power tradeoffs in HetNets with hybrid energy sources[C]// 2014 IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication. Washington, DC, USA: IEEE, 2014: 1857-1861. |
[24] | ARI A A, GUEROUI A, TITOUNA C, et al. Resource allocation scheme for 5G C-RAN: A Swarm intelligence based approach[J]. Computer Networks, 2019, 165:106957. |
[25] | 姜潮, 韩旭, 谢慧超. 区间不确定性优化设计理论与方法[M]. 北京: 科学出版社, 2017: 30-43. |
[25] | JIANG Chao, HAN Xu, XIE Huichao. Interval uncertain optimization design: Theory and methods[M]. Beijing: Science Press, 2017: 30-43. |
[26] | 曾博, 徐富强, 刘一贤, 等. 综合考虑经济-环境-社会因素的多能耦合系统高维多目标规划[J]. 电工技术学报, 2021, 36(7):1434-1445. |
[26] | ZENG Bo, XU Fuqiang, LIU Yixian, et al. High-dimensional multiobjective optimization for multi-energy coupled system planning with consideration of economic, environmental and social factors[J]. Transactions of China Electrotechnical Society, 2021, 36(7):1434-1445. |
[27] | WANG B, YANG Q, YANG L T, et al. On minimizing energy consumption cost in green heterogeneous wireless networks[J]. Computer Networks, 2017, 129:522-535. |
[28] | 卢艺, 戴月, 马伟哲, 等. 含分布式电源和储能装置的配电网分散式动态最优潮流[J]. 电网技术, 2019, 43(2):434-444. |
[28] | LU Yi, DAI Yue, MA Weizhe, et al. Decentralized dynamic optimal power flow in distribution networks with distributed generation and energy storage devices[J]. Power System Technology, 2019, 43(2):434-444. |
[29] | 康重庆, 周天睿, 陈启鑫, 等. 电网低碳效益评估模型及其应用[J]. 电网技术, 2009, 33(17):1-7. |
[29] | KANG Chongqing, ZHOU Tianrui, CHEN Qixin, et al. Assessment model on low-carbon effects of power grid and its application[J]. Power System Technology, 2009, 33(17):1-7. |
[30] | 陈琪华, 何育恒, 曾永忠, 等. TOPSIS法在垃圾焚烧发电锅炉蒸汽空气预热器综合评价中的应用[J]. 中国电机工程学报, 2020, 40(4):1274-1281. |
[30] | CHEN Qihua, HE Yuheng, ZENG Yongzhong, et al. Application of TOPSIS method in the comprehensive evaluation of steam-air preheater on waste incineration boiler[J]. Proceedings of the CSEE, 2020, 40(4):1274-1281. |
[31] | 易文飞, 张艺伟, 曾博, 等. 多形态激励型需求侧响应协同平衡可再生能源波动的鲁棒优化配置[J]. 电工技术学报, 2018, 33(23):5541-5554. |
[31] | YI Wenfei, ZHANG Yiwei, ZENG Bo, et al. Robust optimization allocation for multi-type incentive-based demand response collaboration to balance renewable energy fluctuations[J]. Transactions of China Electrotechnical Society, 2018, 33(23):5541-5554. |
/
〈 |
|
〉 |