Journal of Shanghai Jiaotong University >
Real-Time Risk Evaluation Method of Power System Equipment and N-m Fault Contingency Plan Generation Under Typhoon Meteorological Environment
Received date: 2021-10-21
Online published: 2022-01-24
In order to improve the power grid operation risk early warning and pre-control capabilities in typhoon and other disastrous climates, the historical fault features of power grid are extracted by utilizing the machine learning technology based on the meteorological environment data, geographic environment, and the status of power transmission and transformation equipment. The meteorological risk probability of digital transmission channel is quantified to realize the advanced quantitative warning of high-risk faults in the power grid under typhoon weather environment. The proposed method can genarate the current and future N-m fault handling plans based on the current power grid status and significantly enhance the timeliness and pertinence of fault prediction. This method overcomes the difficulty that the meteorological risk model needs to be continuously revised according to the actual situation, and takes into account the response of various safety automatic devices in the power grid after a high-risk equipment failure and the control measures that need to be taken. The practical application shows that this method can provide significant decision supports for risk pre-control in the power grid dispatching operation.
ZHOU Yi, QIN Kangping, SUN Jinwen, FAN Dongqi, ZHENG Yiming . Real-Time Risk Evaluation Method of Power System Equipment and N-m Fault Contingency Plan Generation Under Typhoon Meteorological Environment[J]. Journal of Shanghai Jiaotong University, 2021 , 55(S2) : 22 -30 . DOI: 10.16183/j.cnki.jsjtu.2021.S2.004
[1] | 肖杭, 张秀彬. 基于分层模型与本体映射的异构电力信息系统集成[J]. 上海交通大学学报, 2009, 43(8): 1238-1242. |
[1] | XIAO Hang, ZHANG Xiubin. Integration of heterogeneous electric power information system based on hierarchy model and ontology mapping[J]. Journal of Shanghai Jiao Tong University, 2009, 43(8): 1238-1242. |
[2] | 张林林, 胡熊伟, 李鹏, 等. 基于极限学习机的电力系统暂态稳定评估方法[J]. 上海交通大学学报, 2019, 53(6): 749-756. |
[2] | ZHANG Linlin, HU Xiongwei, LI Peng, et al. Power system transient stability assessment based on extreme learning machine[J]. Journal of Shanghai Jiao Tong University, 2019, 53(6): 749-756. |
[3] | 周毅, 杨海, 秦康平, 等. 考虑冰风载荷影响的输电线路运行风险评估方法[J]. 中国安全生产科学技术, 2021, 17(7): 142-148. |
[3] | ZHOU Yi, YANG Hai, QIN Kangping, et al. Risk assessment method for transmission line operation considering influence of ice and wind loads[J]. Journal of Safety Science and Technology, 2021, 17(7): 142-148. |
[4] | 周毅, 周良才, 沈颖平. 基于数字孪生的华东电网安控系统虚拟建模及实现[J]. 电器与能效管理技术, 2021(6): 47-51. |
[4] | ZHOU Yi, ZHOU Liangcai, SHEN Yingping. Modeling and implementation of East China power grid security and stability control system based on digital twin[J]. Electrical & Energy Management Technology, 2021(6): 47-51. |
[5] | 中华人民共和国住房和城乡建设部. 110 kV~750 kV架空输电线路设计规范: GB 50545—2010[S]. 北京: 中国计划出版社, 2010. |
[5] | Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for design of 110 kV-750 kV overhead transmission line: GB 50545—2010[S]. Beijing: China Planning Press, 2010. |
[6] | 邵天晓. 架空送电线路的电线力学计算[M]. 第2版. 北京: 中国电力出版社, 2003. |
[6] | SHAO Tianxiao. Electric wire mechanics calculation of overhead transmission line [M]. 2nd ed. Beijing: China Electric Power Press, 2003. |
[7] | 孙才新. 大气环境与电气外绝缘[M]. 北京: 中国电力出版社, 2002. |
[7] | SUN Caixin. Atmospheric environment and electrical external insulation [M]. Beijing: China Electric Power Press, 2002. |
[8] | 中华人民共和国电力工业部. 交流电气装置的过电压保护和绝缘配合: DL/T 620—1997[S]. 北京: 中国电力出版社, 1997. |
[8] | Ministry of Electric Power Industry of the People’s Republic of China. Overvoltage protection and insulation coordination for AC electrical installations: DL/T 620—1997[S]. Beijing: China Electric Power Press, 1997. |
[9] | 白海峰, 李宏男. 架空输电线路风雨致振动响应研究[J]. 电网技术, 2009, 33(2): 36-40. |
[9] | BAI Haifeng, LI Hongnan. Dynamic response of overhead transmission lines to oscillation caused by wind or rainfall loads[J]. Power System Technology, 2009, 33(2): 36-40. |
[10] | 国家电网公司. 电力系统污区分级与外绝缘选择标准第1部分: 交流系统: Q/GDW 1152.1—2014[S]. 北京: 国家电网公司, 2015. |
[10] | State Grid Corporation of China. Pollution classification and external insulation selection for electric power system Part I: a.c.system: Q/GDW 1152.1—2014[S]. Beijing: State Grid Corporation of China, 2015. |
[11] | 郭志民, 王伟, 李哲, 等. 强对流天气下输电线路多因素风险动态评估方法[J]. 电网技术, 2017, 41(11): 3598-3608. |
[11] | GUO Zhimin, WANG Wei, LI Zhe, et al. Dynamic multi-risk assessment method of transmission lines under severe convective weather[J]. Power System Technology, 2017, 41(11): 3598-3608. |
[12] | 方丽华, 熊小伏, 方嵩, 等. 基于电网故障与气象因果关联分析的系统风险控制决策[J]. 电力系统保护与控制, 2014, 42(17): 113-119. |
[12] | FANG Lihua, XIONG Xiaofu, FANG Song, et al. Power system risk control decision based on cause and effect correlation analysis of fault and meteorology[J]. Power System Protection and Control, 2014, 42(17): 113-119. |
[13] | 郑旭, 赵文彬, 肖嵘, 等. 华东电网500 kV输电线路气象环境风险预警研究及应用[J]. 华东电力, 2010, 38(8): 1220-1225. |
[13] | ZHENG Xu, ZHAO Wenbin, XIAO Rong, et al. Investigation and application of meteorological environmental risk early-warning for 500 kV transmission lines in East China grid[J]. East China Electric Power, 2010, 38(8): 1220-1225. |
[14] | 熊小伏, 王尉军, 于洋, 等. 多气象因素组合的输电线路风险分析[J]. 电力系统及其自动化学报, 2011, 23(6): 11-15. |
[14] | XIONG Xiaofu, WANG Weijun, YU Yang, et al. Risk analysis method for transmission line combining of various meteorological factors[J]. Proceedings of the Chinese Society of Universities for Electric Power System and Its Automation, 2011, 23(6): 11-15. |
[15] | 赵淳, 宋暾昉, 彭波, 等. 特高压输电线路污闪和风偏风险实时评估与预警[J]. 中国电力, 2018, 51(4): 15-21. |
[15] | ZHAO Chun, SONG Tunfang, PENG Bo, et al. Real time assessment and early warning of pollution flashover and wind deflection risk of UHV transmission lines based on meteorological factors[J]. Electric Power, 2018, 51(4): 15-21. |
/
〈 |
|
〉 |