Influence of Distributed Leading-Edge Roughness on Stall Characteristics of NACA0012 Airfoil

Expand
  • 1. School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China
    2. The First Aircraft Institute, Xi’an 710089, China

Received date: 2020-10-11

  Online published: 2022-01-21

Abstract

The influence of the distributed leading-edge roughness on the stall characteristics of NACA0012 airfoil is analyzed in full turbulence flow or transition flow. The Menter shear-stress transport model and the $\gamma - \overline{Re_{\theta t}}$($\overline{Re_{\theta t}}$ is transition momentum-thickness Reynolds number, γ is intermittency)transition model are used to simulate the flow around the airfoil by coupling the roughness model and the roughness amplification factor transport equation respectively. The airfoil stall characteristics and the pre-stall boundary layer development are analyzed. The results show that the trailing-edge stall occurs for the NACA0012 airfoil in full turbulence flow, and the stall characteristic is not changed by the leading-edge roughness. The maximum lift coefficients are significantly decreased with the leading-edge roughness at a lower angle of attack. In transition flow, the leading-edge roughness inhibits the formation of leading edge laminar separation bubbles, and the stall characteristic of airfoil is changed from leading-edge stall to trailing-edge stall. The maximum lift coefficient is significantly increased with the leading-edge roughness at a higher angle of attack.

Cite this article

LI Yi, BAI Junqiang, ZHANG Yanjun, ZHAO Ke . Influence of Distributed Leading-Edge Roughness on Stall Characteristics of NACA0012 Airfoil[J]. Journal of Shanghai Jiaotong University, 2022 , 56(1) : 101 -113 . DOI: 10.16183/j.cnki.jsjtu.2020.324

References

[1] BERTIN J J, CUMMINGS R M. Aerodynamics for engineers[M]. 6th ed. Harlow Essex: Pearson Education Limited, 2013.
[2] RAMSAY R R, HOFFMAN M J, GREGOREK G M. Effects of grit roughness and pitch oscillations on the S809 airfoil[R]. Golden, Colorado: National Renewable Energy Laboratory, 1995.
[3] JANISZEWSKA J M, RAMSAY R R, HOFFMAN M J, et al. Effects of grit roughness and pitch oscillations on the S814 airfoil[R]. Golden, Colorado: National Renewable Energy Laboratory, 1995.
[4] REUSS R L, HOFFMAN M Jand GREGOREK G M. Effects of surface roughness and vortex generators on the NACA 4415 airfoil[R]. Golden, Colorado: National Renewable Energy Laboratory, 1995.
[5] KERHO M F, BRAGG M B. Airfoil boundary-layer development and transition with large leading-edge roughness[J]. AIAA Journal, 1997, 35(1):75-84.
[6] 包能胜, 霍福鹏, 叶枝全, 等. 表面粗糙度对风力机翼型性能的影响[J]. 太阳能学报, 2005, 26(4):458-462.
[6] BAO Nengsheng, HUO Fupeng, YE Zhiquan, et al. Aerodynamic performance influence with roughness on wind turbine airfoil surface[J]. Acta Energiae Solaris Sinica, 2005, 26(4):458-462.
[7] 包能胜, 倪维斗. 风力机翼型前缘表面粗糙度对气动性能影响[J]. 太阳能学报, 2008, 29(12):1465-1470.
[7] BAO Nengsheng, NI Weidou. Influence of additional rough strap of wind turbine airfoil leading edge surface on aerodynamic performance[J]. Acta Energiae Solaris Sinica, 2008, 29(12):1465-1470.
[8] LI D S, LI R N, YANG C X, et al. Effects of surface roughness on aerodynamic performance of a wind turbine airfoil[C]// 2010 Asia-Pacific Power and Energy Engineering Conference. Piscataway, NJ, USA: IEEE, 2010: 1-4.
[9] 李仁年, 陈寅. 雷诺数对粗糙表面翼型气动性能的影响[J]. 南京航空航天大学学报, 2011, 43(5):693-696.
[9] LI Rennian, CHEN Yin. Effects of surface roughness and Reynolds number on aerodynamic performance of wind turbine airfoil[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2011, 43(5):693-696.
[10] 焦灵燕, 汪建文, 贺玲丽. 粗糙度对风力机翼型气动性能影响的模拟研究[J]. 可再生能源, 2014, 32(12):1816-1820.
[10] JIAO Lingyan, WANG Jianwen, HE Lingli. Simulation study on effect of surface roughness on aerodynamic performance of wind turbine airfoil[J]. Renewable Energy Resources, 2014, 32(12):1816-1820.
[11] JOSEPH L A, FENOUIL J, BORGOLTZ A, et al. Aerodynamic effects of roughness on wind turbine blade sections[C]// 33rd AIAA Applied Aerodynamics Conference. Reston, Virginia, USA: AIAA, 2015.
[12] 李虹杨, 郑赟, 刘大响. 粗糙壁面诱导的流动转捩数值模拟方法[J]. 航空动力学报, 2016, 31(9):2251-2257.
[12] LI Hongyang, ZHENG Yun, LIU Daxiang. Numerical simulation method of roughness induced transition[J]. Journal of Aerospace Power, 2016, 31(9):2251-2257.
[13] 李虹杨, 郑赟. 粗糙度对涡轮叶片流动转捩及传热特性的影响[J]. 北京航空航天大学学报, 2016, 42(10):2038-2047.
[13] LI Hongyang, ZHENG Yun. Effect of surface roughness on flow transition and heat transfer of turbine blade[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(10):2038-2047.
[14] ZHANG Y. Effects of distributed leading-edge roughness on aerodynamic performance of a low-Reynolds-number airfoil: An experimental study[J]. Theoretical and Applied Mechanics Letters, 2018, 8(3):201-207.
[15] KRUSE E K, SØRENSEN N, BAK C, et al. CFD simulations and evaluation of applicability of a wall roughness model applied on a NACA 633-418 airfoil[J]. Wind Energy, 2020, 23(11):2056-2067.
[16] WANG M Y, YANG C W, LI Z L, et al. Effects of surface roughness on the aerodynamic performance of a high subsonic compressor airfoil at low Reynolds number[J]. Chinese Journal of Aeronautics, 2021, 34(3):71-81.
[17] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8):1598-1605.
[18] LANGEL C M, CHOW R, VAN DAM C P. Further developments to a local correlation based roughness model for boundary layer transition prediction[C]// 53rd AIAA Aerospace Sciences Meeting. Reston, Virginia, USA: AIAA, 2015.
[19] LANGTRY R B. A correlation-based transition model using local variables for unstructured parallelized CFD codes[D]. Stuttgart: University Stuttgart, 2006.
[20] LANGEL C M, CHOW R, VAN DAM C P, et al. RANS based methodology for predicting the influence of leading edge erosion on airfoil performance [R]. Albuquerque,New Mexico: Sandia National Laboratories, 2017.
[21] WILCOX D C. Formulation of the k-w turbulence model revisited[J]. AIAA Journal, 2008, 46(11):2823-2838.
[22] LANGTRY R B, MENTER F R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal, 2009, 47(12):2894-2906.
[23] DURBIN P A, MEDIC G, SEO J M, et al. Rough wall modification of two-layer k model[J]. Journal of Fluids Engineering, 2001, 123(1):16-21.
[24] KNOPP T, EISFELD B, CALVO J B. A new extension for k-ω turbulence models to account for wall roughness[J]. International Journal of Heat and Fluid Flow, 2009, 30(1):54-65.
[25] AUPOIX B. Roughness corrections for the k-ω shear stress transport model: Status and proposals[J]. Journal of Fluids Engineering, 2015, 137(2):021202.
[26] FEINDT E G. Untersuchungen über die abhängigkeit des umschlages laminar-turbulent von der oberflächenrauhigkeit und der druckverteilung[J]. Schiffbautechn, 1957, 50(8):180-203.
[27] DASSLER P, KOZULOVIC D, FIALA A. Modeling of roughness-induced transition using local variables[C]// FiFth European Conference on Computational Fluid Dynamics, Lisbon, Portugal: ECCOMAS, 2010.
Outlines

/