Journal of Shanghai Jiaotong University >
Short-Term Production Simulation of Power System Containing Wind Power Under Carbon Trading Environment
Received date: 2021-08-07
Online published: 2021-12-30
In order to improve the competitiveness of wind power in participating in the power market, promote low-carbon operation of the power system, and meet the new requirements for the completeness and flexibility of the production simulation model due to the uncertainty of wind power output,this paper analyzes the electricity cost composition from the perspective of low-carbon economy, and applies the stochastic programming theory to propose a short-term production simulation model of power system containing wind power. Considering the participation of the carbon trading market, this model aims to minimize the expected cost of electricity production in a short-term time scale, and coordinately optimize the day-ahead power output, real-time power regulation, power reserve capacity, wind curtailment, and load shedding. Taking the modified IEEE 39-bus system as an example, this paper quantitatively evaluates the impact of carbon trading mechanism, carbon trading price, and wind power installed capacity on electricity costs and their contributions to carbon emission reduction. The simulation results show that the proposed model can effectively analyze the short-term electricity cost, carbon emissions, and operational risks of the power system containing wind power under the carbon trading environment, thus has a promise application prospect.
LIU Mingtao, XIE Jun, ZHANG Qiuyan, BAO Changyu, CHANG Yifan, DUAN Jianan, SHI Xionghua, BAO Yong . Short-Term Production Simulation of Power System Containing Wind Power Under Carbon Trading Environment[J]. Journal of Shanghai Jiaotong University, 2021 , 55(12) : 1598 -1607 . DOI: 10.16183/j.cnki.jsjtu.2021.295
[1] | 王锡凡. 电力系统规划基础[M]. 北京: 中国电力出版社, 1994. |
[1] | WANG Xifan. Power system planning fundamentals [M]. Beijing: China Electric Power Press, 1994. |
[2] | 顾颖中, 李慧杰, 史保壮. 生产模拟仿真在电力市场环境下的应用案例及建议[J]. 电力系统自动化, 2017, 41(24):77-82. |
[2] | GU Yingzhong, LI Huijie, SHI Baozhuang. Application and suggestions of power system production simulation in deregulated electricity market[J]. Automation of Electric Power Systems, 2017, 41(24):77-82. |
[3] | 崔杨, 穆钢, 刘玉, 等. 风电功率波动的时空分布特性[J]. 电网技术, 2011, 35(2):110-114. |
[3] | CUI Yang, MU Gang, LIU Yu, et al. Spatiotemporal distribution characteristic of wind power fluctuation[J]. Power System Technology, 2011, 35(2):110-114. |
[4] | 张节潭, 程浩忠, 胡泽春, 等. 含风电场的电力系统随机生产模拟[J]. 中国电机工程学报, 2009, 29(28):34-39. |
[4] | ZHANG Jietan, CHENG Haozhong, HU Zechun, et al. Power system probabilistic production simulation including wind farms[J]. Proceedings of the CSEE, 2009, 29(28):34-39. |
[5] | 曲翀, 王秀丽, 谢绍宇, 等. 含风电电力系统随机生产模拟的改进算法[J]. 西安交通大学学报, 2012, 46(6):115-121. |
[5] | QU Chong, WANG Xiuli, XIE Shaoyu, et al. An improved algorithm for probabilistic production simulation of power systems with wind power[J]. Journal of Xi’an Jiaotong University, 2012, 46(6):115-121. |
[6] | 丁明, 林玉娟, 潘浩. 考虑负荷与新能源时序特性的随机生产模拟[J]. 中国电机工程学报, 2016, 36(23):6305-6314. |
[6] | DING Ming, LIN Yujuan, PAN Hao. Probabilistic production simulation considering time sequence characteristics of load and new energy[J]. Proceedings of the CSEE, 2016, 36(23):6305-6314. |
[7] | 曹阳, 李鹏, 袁越, 等. 基于时序仿真的新能源消纳能力分析及其低碳效益评估[J]. 电力系统自动化, 2014, 38(17):60-66. |
[7] | CAO Yang, LI Peng, YUAN Yue, et al. Analysis on accommodating capability of renewable energy and assessment on low-carbon benefits based on time sequence simulation[J]. Automation of Electric Power Systems, 2014, 38(17):60-66. |
[8] | 郑漳华, 艾芊, 徐伟华, 等. 基于伪并行SPEA2算法的含风电场多目标负荷调度[J]. 上海交通大学学报, 2009, 43(8):1222-1227. |
[8] | ZHENG Zhanghua, AI Qian, XU Weihua, et al. Multi-objective load dispatch in wind power integrated system based on pseudo-parallel SPEA2 algorithm[J]. Journal of Shanghai Jiao Tong University, 2009, 43(8):1222-1227. |
[9] | CHEN C L. Optimal wind-thermal generating unit commitment[J]. IEEE Transactions on Energy Conversion, 2008, 23(1):273-280. |
[10] | 罗超, 杨军, 孙元章, 等. 考虑备用容量优化分配的含风电电力系统动态经济调度[J]. 中国电机工程学报, 2014, 34(34):6109-6118. |
[10] | LUO Chao, YANG Jun, SUN Yuanzhang, et al. Dynamic economic dispatch of wind integrated power system considering optimal scheduling of reserve capacity[J]. Proceedings of the CSEE, 2014, 34(34):6109-6118. |
[11] | 赵晋泉, 唐洁, 罗卫华, 等. 一种含风电电力系统的日前发电计划和旋转备用决策模型[J]. 电力自动化设备, 2014, 34(5):21-27. |
[11] | ZHAO Jinquan, TANG Jie, LUO Weihua, et al. Day-ahead generation scheduling and spinning reserve decision-making model for power grid containing wind power[J]. Electric Power Automation Equipment, 2014, 34(5):21-27. |
[12] | DOOSTIZADEH M, AMINIFAR F, GHASEMI H, et al. Energy and reserve scheduling under wind power uncertainty: An adjustable interval approach[J]. IEEE Transactions on Smart Grid, 2016, 7(6):2943-2952. |
[13] | 王志成, 王秀丽, 王帅. 考虑实时市场平衡费用的含风电日前市场电能-备用联合出清模型[J]. 中国电力, 2020, 53(9):19-27. |
[13] | WANG Zhicheng, WANG Xiuli, WANG Shuai. Day-ahead market energy-reserve joint clearing model considering real-time market balancing cost under participation of wind power generation[J]. Electric Power, 2020, 53(9):19-27. |
[14] | 范振亚. 考虑碳交易的含风电场的电力系统经济调度研究[D]. 北京: 华北电力大学, 2016. |
[14] | FAN Zhenya. Research on economic dispatch of power system intergrated with wind power considering carbon trading[D]. Beijing: North China Electric Power University, 2016. |
[15] | 丁明, 楚明娟, 毕锐, 等. 基于序贯蒙特卡洛随机生产模拟的风电接纳能力评价方法及应用[J]. 电力自动化设备, 2016, 36(9):67-73. |
[15] | DING Ming, CHU Mingjuan, BI Rui, et al. Wind power accommodation capability evaluation based on sequential Monte Carlo probabilistic production simulation and its application[J]. Electric Power Automation Equipment, 2016, 36(9):67-73. |
[16] | 檀勤良, 丁毅宏. 考虑碳交易的火电节能调度优化模型及应对模式[J]. 电力自动化设备, 2018, 38(7):175-181. |
[16] | TAN Qinliang, DING Yihong. Optimal energy-saving dispatching model for thermal power considering carbon trading and its coping mode[J]. Electric Power Automation Equipment, 2018, 38(7):175-181. |
[17] | 张程飞, 袁越, 张新松, 等. 考虑碳排放配额影响的含风电系统日前调度计划模型[J]. 电网技术, 2014, 38(8):2114-2120. |
[17] | ZHANG Chengfei, YUAN Yue, ZHANG Xinsong, et al. Day-ahead dispatching scheduling for power grid integrated with wind farm considering influence of carbon emission quota[J]. Power System Technology, 2014, 38(8):2114-2120. |
[18] | 张晓辉, 闫柯柯, 卢志刚, 等. 基于场景概率的含风电系统多目标低碳经济调度[J]. 电网技术, 2014, 38(7):1835-1841. |
[18] | ZHANG Xiaohui, YAN Keke, LU Zhigang, et al. Scenario probability based multi-objective optimized low-carbon economic dispatching for power grid integrated with wind farms[J]. Power System Technology, 2014, 38(7):1835-1841. |
[19] | 张坤民, 潘家华, 崔大鹏. 低碳经济论[M]. 北京: 中国环境科学出版社, 2008. |
[19] | ZHANG Kunmin, PAN Jiahua, CUI Dapeng. Introduction to low carbon economy[M]. Beijing: China Environment Science Press, 2008. |
[20] | 张晓辉, 闫柯柯, 卢志刚, 等. 基于碳交易的含风电系统低碳经济调度[J]. 电网技术, 2013, 37(10):2697-2704. |
[20] | ZHANG Xiaohui, YAN Keke, LU Zhigang, et al. Carbon trading based low-carbon economic dispatching for power grid integrated with wind power system[J]. Power System Technology, 2013, 37(10):2697-2704. |
[21] | TALAQ J H, EL-HAWARY F, EL-HAWARY M E. A summary of environmental/economic dispatch algorithms[J]. IEEE Transactions on Power Systems, 1994, 9(3):1508-1516. |
[22] | BOUFFARD F, GALIANA F D. Stochastic security for operations planning with significant wind power generation[J]. IEEE Transactions on Power Systems, 2008, 23(2):306-316. |
[23] | YU C W, ZHAO X S, WEN F S, et al. Pricing and procurement of operating reserves in competitive pool-based electricity markets[J]. Electric Power Systems Research, 2005, 73(1):37-43. |
[24] | CARRION M, ARROYO J M. A computationally efficient mixed-integer linear formulation for the thermal unit commitment problem[J]. IEEE Transactions on Power Systems, 2006, 21(3):1371-1378. |
[25] | LIU G D, TOMSOVIC K. Quantifying spinning reserve in systems with significant wind power penetration[J]. IEEE Transactions on Power Systems, 2012, 27(4):2385-2393. |
[26] | SABER A Y, VENAYAGAMOORTHY G K. Plug-in vehicles and renewable energy sources for cost and emission reductions[J]. IEEE Transactions on Industrial Electronics, 2011, 58(4):1229-1238. |
/
〈 |
|
〉 |