Online Motion Planning for Two Space Rigid Bodies with Rolling Constraints

Expand
  • a. Shanghai Key Laboratory of Digital Manufacture for Thin-Walled Structures, Shanghai 200240, China
    b. State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2019-09-15

  Online published: 2021-08-31

Abstract

The rolling restraint system between two space rigid bodies is a typical non-holonomic system. The incomplete characteristics can be used to simplify the mechanical structure and improve the reliability of the system. Aimed at the problems that the state variables of the pure rolling constraint non-holonomic system are difficult to control, the existing control methods are limited to specific models, and there is a lack of online control research, a solution method suitable for the online motion planning of the general rolling constraint system is established based on the rolling constraint first-order motion model. First, the offline motion planning is achieved by using the collocation method to obtain the reference trajectory. Then, the sequential action control (SAC) algorithm is used in real-time control combined with the rolling optimization framework to realize the online motion planning of the rolling system. The algorithm is applied to the real-time motion planning of the ball-plane rolling model and the rolling model between two spheres. The simulation results show that the method has a practical application value in broadening the control of the spherical robot and the operation of the dexterous manipulator.

Cite this article

REN Shufeng, YANG Dan, YU Haidong, Wang Hao . Online Motion Planning for Two Space Rigid Bodies with Rolling Constraints[J]. Journal of Shanghai Jiaotong University, 2021 , 55(8) : 1009 -1017 . DOI: 10.16183/j.cnki.jsjtu.2019.261

References

[1] 徐娜, 陈雄, 孔庆生, 等. 非完整约束下的机器人运动规划算法[J]. 机器人, 2011, 33(6):666-672.
[1] XU Na, CHEN Xiong, KONG Qingsheng, et al. Motion planning for robot with nonholonomic constraints[J]. Robot, 2011, 33(6):666-672.
[2] MURRAY R M, LI Z X, SASTRY S S. A mathematical introduction to robotic manipulation[M]. California: CRC Press, 2017.
[3] 彭坤, 彭睿, 黄震, 等. 求解最优月球软着陆轨道的隐式打靶法[J]. 航空学报, 2019, 40(7):159-167.
[3] PENG Kun, PENG Rui, HUANG Zhen, et al. Implicit shooting method to solve optimal Lunar soft landing trajectory[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(7):159-167.
[4] 周誌元, 谭天乐. 小行星探测器轨迹优化方法[J]. 上海航天, 2014, 31(2):57-64.
[4] ZHOU Zhiyuan, TAN Tianle. Optimization for asteroids spacecraft trajectory[J]. Aerospace Shanghai, 2014, 31(2):57-64.
[5] YANG C G, LI Z J, LI J. Trajectory planning and optimized adaptive control for a class of wheeled inverted pendulum vehicle models[J]. IEEE Transactions on Cybernetics, 2013, 43(1):24-36.
[6] ANSARI A R, MURPHEY T D. Sequential action control: Closed-form optimal control for nonlinear and nonsmooth systems[J]. IEEE Transactions on Robotics, 2016, 32(5):1196-1214.
[7] 杜明博, 梅涛, 陈佳佳, 等. 复杂环境下基于RRT的智能车辆运动规划算法[J]. 机器人, 2015, 37(4):443-450.
[7] DU Mingbo, MEI Tao, CHEN Jiajia, et al. RRT-based motion planning algorithm for intelligent vehicle in complex environments[J]. Robot, 2015, 37(4):443-450.
[8] PALMIERI L, ARRAS K O. A novel RRT extend function for efficient and smooth mobile robot motion planning[C]//2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ, USA: IEEE, 2014: 205-211.
[9] ORIOLO G, VENDITTELLI M. A framework for the stabilization of general nonholonomic systems with an application to the plate-ball mechanism[J]. IEEE Transactions on Robotics, 2005, 21(2):162-175.
[10] LI Z, CANNY J. Motion of two rigid bodies with rolling constraint[J]. IEEE Transactions on Robotics and Automation, 1990, 6(1):62-72.
[11] ALOUGES F, CHITOUR Y, LONG R X. A motion-planning algorithm for the rolling-body problem[J]. IEEE Transactions on Robotics, 2010, 26(5):827-836.
[12] 赵振, 刘才山, 鲁建东. 空间物体点接触纯滚动的几何意义[J]. 北京大学学报(自然科学版), 2016, 52(4):713-716.
[12] ZHAO Zhen, LIU Caishan, LU Jiandong. On nonholonomic constraints about the pure rolling of point contact[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2016, 52(4):713-716.
[13] REHAN M, REYHANOGLU M. Global formulation and motion planning for a sphere rolling on a smooth surface[J]. International Journal of Control, Automation and Systems, 2018, 16(6):2709-2717.
[14] JURDJEVIC V, ZIMMERMAN J. Rolling sphere problems on spaces of constant curvature[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 2008, 144(3):729-747.
[15] ZIMMERMAN J A. Optimal control of the sphere S n rolling on En[J]. Mathematics of Control, Signals and Systems, 2005, 17(1):14-37.
[16] MONTANA D J. The kinematics of contact and grasp[J]. The International Journal of Robotics Research, 1988, 7(3):17-32.
[17] AGRACHEV A A, SACHKOV Y L. Control theory from the geometric viewpoint[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004.
Outlines

/