Propagation Characteristics of Low Frequency Sound Energy in Range-Dependent Shallow Water Waveguides

Expand
  • 1. Institute of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, Zhejiang, China
    2. Key Laboratory of Ocean Observation-Imaging Testbed of Zhejiang Province, Zhejiang University, Zhoushan 316021, Zhejiang, China
    3. State Key Laboratory of Acoustics, Chinese Academy of Sciences, Beijing 100190, China
    4. Institute of Naval Architecture and Mechanical-Electrical Engineering, Zhejiang Ocean University, Zhoushan 316022, Zhejiang, China
    5. The Acoustic Group, Nowegian University of Science and Technology, Trondheim 7491, Norway

Received date: 2019-08-08

  Online published: 2021-08-31

Abstract

In view of the low-frequency sound energy propagation in range-dependent waveguides in shallow water, in cylindrical coordinates, the sound energy flux is used as the study object based on the finite element method (FEM). The influence laws and the corresponding mechanisms of three types of complex seabed topographies, wedye-shaped seabed, seamount, and trench on sound energy propagation characteristics in sound field are discussed combined with specific simulation examples. The simulation results reveal that the FEM can accurately calculate sound field distribution in any seabed topography. For the up-sloping wedge-shaped seabed, the greater the inclination angle is, the stronger the sound energy leaks to the bottom, the more rapid the sound energy attenuates in water. But for the down-sloping wedge-shaped seabed the opposite is true. A small seamount enhances the sound energy above it, but hinders the reception of the sound energy behind it. The influence laws of small trenches are related to the grazing angle of sound energy. Only when the horizontal angle of the trench is smaller than the grazing angle of each normal mode in waveguide, would the sound energy be influenced in propagation.

Cite this article

ZHU Hanhao, XIAO Rui, ZHU Jun, TANG Jun . Propagation Characteristics of Low Frequency Sound Energy in Range-Dependent Shallow Water Waveguides[J]. Journal of Shanghai Jiaotong University, 2021 , 55(8) : 958 -967 . DOI: 10.16183/j.cnki.jsjtu.2019.237

References

[1] YANG S E. Theory of underwater sound propagation [M]. Harbin: Harbin Engineering University Press, 2009.
[2] 祝捍皓, 朴胜春, 张海刚, 等. 典型海底条件下抛物方程声场计算方法的缩比实验验证[J]. 上海交通大学学报, 2013, 47(4):532-537.
[2] ZHU Hanhao, PIAO Shengchun, ZHANG Haigang, et al. Verification of the calculation of acoustic field with typical bottom based on parabolic equation in scaled tank experiment[J]. Journal of Shanghai Jiao Tong University, 2013, 47(4):532-537.
[3] DRAGNA D, BLANC-BENON P. Sound propagation over the ground with a random spatially-varying surface admittance[J]. The Journal of the Acoustical Society of America, 2017, 142(4):2058-2072.
[4] 徐传秀, 朴胜春, 杨士莪, 等. 采用能量守恒和高阶Padé近似的三维水声抛物方程模型[J]. 声学学报, 2016, 41(4):477-484.
[4] XU Chuanxiu, PIAO Shengchun, YANG Shi’e, et al. A three-dimensional parabolic equation model using energy-conserving and higher-order Padé approximant in underwater acoustics[J]. Acta Acustica, 2016, 41(4):477-484.
[5] 莫亚枭, 朴胜春, 张海刚, 等. 一种能量守恒的双向耦合简正波水声传播模型[J]. 声学学报, 2016, 41(2):154-162.
[5] MO Yaxiao, PIAO Shengchun, ZHANG Haigang, et al. An energy-conserving two-way coupled mode model for underwater acoustic propagation[J]. Acta Acustica, 2016, 41(2):154-162.
[6] WANG X, KHAZAIE S, MARGHERI L, et al. Shallow water sound source localization using the iterative beamforming method in an image framework[J]. Journal of Sound and Vibration, 2017, 395:354-370.
[7] 秦继兴, 骆文于, 张仁和, 等. 水平变化波导中两种耦合简正波方法的比较与分析[J]. 声学学报, 2015, 40(4):487-499.
[7] QIN Jixing, LUO Wenyu, ZHANG Renhe, et al. Comparison and analysis between two coupled-mode methods for range-dependent sound propagation[J]. Acta Acustica, 2015, 40(4):487-499.
[8] YU S Q, LIU B H, YU K B, et al. A backscattering model for a stratified seafloor[J]. Acta Oceanologica Sinica, 2017, 36(7):56-65.
[9] YU S Q, LIU B H, YU K B, et al. Measurements of midfrequency acoustic backscattering from a sandy bottom in the south Yellow Sea of China[J]. IEEE Journal of Oceanic Engineering, 2018, 43(4):1179-1186.
[10] 张海刚, 朴胜春, 杨士莪, 等. 楔形弹性海底声矢量场分布规律研究[J]. 声学学报, 2011, 36(4):389-395.
[10] ZHANG Haigang, PIAO Shengchun, YANG Shi’e, et al. Researches on the distribution law of vector sound field in elastic wedge bottom[J]. Acta Acustica, 2011, 36(4):389-395.
[11] BREKHOVSKIKH L, LYSANOV Y. Fundamentals of ocean acoustics[M]. Heidelberg: Springer Berlin, 1982.
[12] 李凡, 郭新毅, 张毅, 等. 水下声传播的发展及其应用[J]. 物理, 2014, 43(10):658-666.
[12] LI Fan, GUO Xinyi, ZHANG Yi, et al. Development and applications of underwater acoustic propagation[J]. Physics, 2014, 43(10):658-666.
[13] ZAMPOLLI M, TESEI A, JENSEN F B, et al. A computationally efficient finite element model with perfectly matched layers applied to scattering from axially symmetric objects[J]. The Journal of the Acoustical Society of America, 2007, 122(3):1472-1485.
[14] 王刚, 安琳. COMSOL Multiphysics工程实践与理论仿真—多物理场数值分析技术[M]. 北京: 电子工业出版社, 2012.
[14] WANG Gang, AN Lin. COMSOL Multiphysics engineering practice and theoretical simulation: Multi physical field numerical analysis technology[M]. Beijing: Publishing House of Electronics Industry, 2012.
[15] 祝捍皓, 郑广学, 张海刚, 等. 浅海环境下低频声信号传播特性研究[J]. 上海交通大学学报, 2017, 51(12):1464-1472.
[15] ZHU Hanhao, ZHENG Guangxue, ZHANG Haigang, et al. Study on propagation characteristics of low frequency acoustic signal in shallow water environment[J]. Journal of Shanghai Jiao Tong University, 2017, 51(12):1464-1472.
[16] MARBURG S, NOLTE B. Computational acoustics of noise propagation in fluids-finite and boundary element methods[M]. Heidelberg: Springer Berlin, 2008.
[17] LI W, LI Z L, ZHANG R H, et al. The effects of seamounts on sound propagation in deep water[J]. Chinese Physics Letters, 2015, 32(6):064302.
Outlines

/