Expansion Planning of Renewable Energy Power System Considering Flexibility and Economy

Expand
  • 1. Yunnan Power Grid Co., Ltd., Kunming 650011, China
    2. Key Laboratory of Control of Power Transmission and Conversion of the Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2020-01-17

  Online published: 2021-07-30

Abstract

The large-scale access to renewable energy such as wind power and photovoltaics brings great uncertainty in power system planning and operation. In order to enhance the ability of high-proportion renewable energy grid to respond to uncertain events and ensure the safe and economic operation, it is necessary to improve the flexibility of the power system. First, based on the perspective of line transmission capacity and safe operation, the flexibility index of the transmission line was defined. Next, considering the economic operation strategy of the system, a multi-objective transmission line planning model based on flexibility and economy was proposed to optimize the flexibility index, investment cost, operating cost, and renewable energy consumption. After that, the NSGAII optimization algorithm was used to solve the model. Finally, the improved Garver-6 and IEEE RTS-24 node systems were taken as examples to analyze the effectiveness of the proposed model. The results show that the planning scheme can improve the transmission capacity of power grids, reduce the probability of renewable energy abandonment, and improve the flexibility and economy of power grid operation.

Cite this article

LI Lingfang, CHEN Zhanpeng, HU Yan, TAI Nengling, GAO Mengping, ZHU Tao . Expansion Planning of Renewable Energy Power System Considering Flexibility and Economy[J]. Journal of Shanghai Jiaotong University, 2021 , 55(7) : 791 -801 . DOI: 10.16183/j.cnki.jsjtu.2020.024

References

[1] 康重庆, 姚良忠. 高比例可再生能源电力系统的关键科学问题与理论研究框架[J]. 电力系统自动化, 2017, 41(9): 2-11.
[1] KANG Chongqing, YAO Liangzhong. Key scientific issues and theoretical research framework for power systems with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2017, 41(9): 2-11.
[2] 周孝信, 鲁宗相, 刘应梅, 等. 中国未来电网的发展模式和关键技术[J]. 中国电机工程学报, 2014, 34(29): 4999-5008.
[2] ZHOU Xiaoxin, LU Zongxiang, LIU Yingmei, et al. Development models and key technologies of future grid in China[J]. Proceedings of the CSEE, 2014, 34(29): 4999-5008.
[3] YUAN X M. Overview of problems in large-scale wind integrations[J]. Journal of Modern Power Systems and Clean Energy, 2013, 1(1): 22-25.
[4] 程浩忠, 李隽, 吴耀武, 等. 考虑高比例可再生能源的交直流输电网规划挑战与展望[J]. 电力系统自动化, 2017, 41(9): 19-27.
[4] CHENG Haozhong, LI Jun, WU Yaowu, et al. Challenges and prospects for AC/DC transmission expansion planning considering high proportion of renewable energy[J]. Automation of Electric Power Systems, 2017, 41(9): 19-27.
[5] 肖定垚, 王承民, 曾平良, 等. 考虑可再生能源电源功率不确定性的电源灵活性评价[J]. 电力自动化设备, 2015, 35(7): 120-125.
[5] XIAO Dingyao, WANG Chengmin, ZENG Ping-liang, et al. Power source flexibility evaluation con-sidering renewable energy generation uncertainty[J]. Electric Power Automation Equipment, 2015, 35(7): 120-125.
[6] 朱凌志, 陈宁, 韩华玲. 风电消纳关键问题及应对措施分析[J]. 电力系统自动化, 2011, 35(22): 29-34.
[6] ZHU Lingzhi, CHEN Ning, HAN Hualing. Key problems and solutions of wind power accommodation[J]. Automation of Electric Power Systems, 2011, 35(22): 29-34.
[7] 鲁宗相, 李海波, 乔颖. 含高比例可再生能源电力系统灵活性规划及挑战[J]. 电力系统自动化, 2016, 40(13): 147-158.
[7] LU Zongxiang, LI Haibo, QIAO Ying. Power system flexibility planning and challenges considering high proportion of renewable energy[J]. Automation of Electric Power Systems, 2016, 40(13): 147-158.
[8] International Energy Agency. Harnessing variable renewables: A guide to the balancing challenge[M]. Paris: International Energy Agency, 2011: 41-67.
[9] INTERNITTENT N, FORCE V G T. Accommodating high levels of variable generation[R]. Atlanta, Georgia: North American Electric Reliability Corporation (NERC), 2009.
[10] LANNOYE E, FLYNN D, O’MALLEY M. The role of power system flexibility in generation planning [C]// Power & Energy Society General Meeting. Detroit, MI, USA: IEEE, 2011.
[11] LANNOYE E, FLYNN D, O’MALLEY M. Evaluation of power system flexibility[J]. IEEE Transactions on Power Systems, 2012, 27(2): 922-931.
[12] LANNOYE E, FLYNN D, O’MALLEY M. Transmission, variable generation, and power system flexibility[J]. IEEE Transactions on Power Systems, 2015, 30(1): 57-66.
[13] 李海波, 鲁宗相, 乔颖, 等. 大规模风电并网的电力系统运行灵活性评估[J]. 电网技术, 2015, 39(6): 1672-1678.
[13] LI Haibo, LU Zongxiang, QIAO Ying, et al. Assessment on operational flexibility of power grid with grid-connected large-scale wind farms[J]. Power System Technology, 2015, 39(6): 1672-1678.
[14] 肖定垚, 王承民, 曾平良, 等. 电力系统灵活性及其评价综述[J]. 电网技术, 2014, 38(6): 1569-1576.
[14] XIAO Dingyao, WANG Chengmin, ZENG Ping-liang, et al. A survey on power system flexibility and its evaluations[J]. Power System Technology, 2014, 38(6): 1569-1576.
[15] CAPASSO A, FALVO M C, LAMEDICA R, et al. A new methodology for power systems flexibility evaluation [C]// Power Tech, 2005 IEEE Russia. St,. Petersburg, Russia: IEEE 2005.
[16] BOUFFARD F, ORTEGA-VAZQUEZ M. The value of operational flexibility in power systems with signi-ficant wind power generation [C]// 2011 IEEE Power and Energy Society General Meeting. Detroit, MI, USA: IEEE, 2011.
[17] 王晞, 叶希, 唐权, 等. 基于广义灵活性指标体系的输电网扩展规划[J]. 电力建设, 2019, 40(3): 67-76.
[17] WANG Xi, YE Xi, TANG Quan, et al. Transmission network expansion planning based on generalized flexibility index system[J]. Electric Power Construction, 2019, 40(3): 67-76.
[18] 梁子鹏, 陈皓勇, 郑晓东, 等. 考虑风电极限场景的输电网鲁棒扩展规划[J]. 电力系统自动化, 2019, 43(16): 58-68.
[18] LIANG Zipeng, CHEN Haoyong, ZHENG Xiao-dong, et al. Robust expansion planning of transmission network considering extreme scenario of wind power[J]. Automation of Electric Power Systems, 2019, 43(16): 58-68.
[19] ALISMAIL F, XIONG P, SINGH C. Optimal wind farm allocation in multi-area power systems using distributionally robust optimization approach[J]. IEEE Transactions on Power Systems, 2018, 33(1): 536-544.
[20] 黄英, 刘宝柱, 王坤宇, 等. 考虑风电接纳能力的储输联合规划[J]. 电网技术, 2018, 42(5): 1480-1489.
[20] HUANG Ying, LIU Baozhu, WANG Kunyu, et al. Joint planning of energy storage and transmission network considering wind power accommodation capabi-lity[J]. Power System Technology, 2018, 42(5): 1480-1489.
[21] 史智萍, 王智敏, 吴玮坪, 等. 基于态势感知的电网消纳可再生能源发电评估与扩展规划方法[J]. 电网技术, 2017, 41(7): 2180-2186.
[21] SHI Zhiping, WANG Zhimin, WU Weiping, et al. Evaluation of renewable energy integration capability and network expansion planning based on situation awareness theory[J]. Power System Technology, 2017, 41(7): 2180-2186.
[22] 于晗, 钟志勇, 黄杰波, 等. 考虑负荷和风电出力不确定性的输电系统机会约束规划[J]. 电力系统自动化, 2009, 33(2): 20-24.
[22] YU Han, ZHONG Zhiyong, HUANG Jiebo, et al. A chance constrained transmission network expansion planning method associated with load and wind farm variations[J]. Automation of Electric Power Systems, 2009, 33(2): 20-24.
[23] 刘万宇, 李华强, 张弘历, 等. 考虑灵活性供需平衡的输电网扩展规划[J]. 电力系统自动化, 2018, 42(5): 56-63.
[23] LIU Wanyu, LI Huaqiang, ZHANG Hongli, et al. Expansion planning of transmission grid based on coordination of flexible power supply and demand[J]. Automation of Electric Power Systems, 2018, 42(5): 56-63.
[24] CESEÑA E M, CAPUDER T, MANCARELLA P. Flexible distributed multienergy generation system expansion planning under uncertainty[J]. IEEE Transactions on Smart Grid, 2016, 7(1): 348-357.
[25] 于海波. 基于负载率均衡度的电力系统调度策略与风电规划研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.
[25] YU Haibo. Research of power system dispatching strategy and wind power planning based on load rate balance degree[D]. Harbin: Harbin Institute of Technology, 2013.
[26] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
[27] WANG J, ZHENG X, TAI N, et al. Resilience-oriented optimal operation strategy of active distribution network[J]. Energies, 2019, 12(17): 3380.
[28] 姜惠兰, 安星, 王亚微, 等. 基于改进NSGA2算法的考虑风机接入电能质量的多目标电网规划[J]. 中国电机工程学报, 2015, 35(21): 5405-5411.
[28] JIANG Huilan, AN Xing, WANG Yawei, et al. Improved NSGA2 algorithm based multi-objective planning of power grid with wind farm considering power quality[J]. Proceedings of the CSEE, 2015, 35(21): 5405-5411.
[29] 孙洪波. 电力网络规划[M]. 重庆: 重庆大学出版社, 1996.
[29] SUN Hongbo. Power network planning[M]. Chongqing: Chongqing University Press, 1996.
Outlines

/