Journal of Shanghai Jiaotong University >
A Combined Residual Detection Method of Reaction Wheel for Fault Detection
Received date: 2020-09-05
Online published: 2021-06-30
A fault detection method of combined residual is proposed to effectively master the health state of the reaction wheels of in-orbit satellite according to the telemetry data. Based on the characteristics of in-orbit telemetry data, in the proposed method, the XGBoost regression model is used to predict the rotation speed and generate residual with available data of the closed-loop controlled reaction wheel. The sensitivity of viscous friction coefficient to the sudden change of friction torque is also combined with the method. In addition, the fault detection method is verified in view of the incomplete telemetry data in orbit. The result shows that the proposed method has an excellent detection effect on common reaction wheel faults. The combined residual fault detection method does not rely on fault samples and has low requirements for samples, so it has a certain application value in practical fault detection system.
HE Xiawei, CAI Yunze, YAN Lingling . A Combined Residual Detection Method of Reaction Wheel for Fault Detection[J]. Journal of Shanghai Jiaotong University, 2021 , 55(6) : 716 -728 . DOI: 10.16183/j.cnki.jsjtu.2019.254
[1] | 江山. 美“开普勒”望远镜出现重大故障[J]. 太空探索, 2013(7):46-46. |
[1] | JIANG Shan. Major failure of Kepler in USA[J]. Space Exploration, 2013(7):46-46. |
[2] | 曲春娣, 张洪钺. 卫星动量轮闭环系统的UIO双观测器故障诊断[J]. 航天控制, 2005, 23(6):66-71. |
[2] | QU Chundi, ZHANG Hongyue. The fault diagnosis of momentum close-loop system used in satellite based on the UIO double observers[J]. Aerospace Control, 2005, 23(6):66-71. |
[3] | BALDI P, BLANKE M, CASTALDI P, et al. Fault diagnosis for satellite sensors and actuators using nonlinear geometric approach and adaptive observers[J]. International Journal of Robust and Nonlinear Control, 2019, 29(16):5429-5455. |
[4] | 李知周, 张锐, 朱振才 等. 基于扩展卡尔曼滤波的动量轮故障检测方法[J]. 航空学报, 2010, 31(8):1614-1621. |
[4] | LI Zhizhou, ZHANG Rui, ZHU Zhencai, et al. Extended Kalman filter-based fault detection for momentum wheel[J]. Acta Aeronautica ET Astronautica Sinica, 2010, 31(8):1614-1621. |
[5] | 吴红芳, 王志. 基于扩展卡尔曼滤波器的航天器姿控飞轮故障诊断[J]. 航天控制, 2012, 30(3):34-37. |
[5] | WU Hongfang, WANG Zhi. The fault diagnosis of spacecraft attitude control flywheel based on extended Kalman filter[J]. Aerospace Control, 2012, 30(3):34-37. |
[6] | LIM J K, PARK C G. Satellite fault detection and isolation scheme with modified adaptive fading EKF[J]. Journal of Electrical Engineering and Technology, 2014, 9(4):1401-1410. |
[7] | RAHIMI A, KUMAR K D, ALIGHANBARI H. Fault estimation of satellite reaction wheels using covariance based adaptive unscented Kalman filter[J]. Acta Astronautica, 2017, 134:159-169. |
[8] | 余鑫. 基于小波包分析的小飞轮轴承故障诊断方法研究[J]. 洛阳理工学院学报(自然科学版), 2013, 23(1):43-46. |
[8] | YU Xin. Fault diagnosis of flywheel bearings based on wavelet package analysis[J]. Journal of Luoyang Institute of Science and Technology (Natural Science Edition) , 2013, 23(1):43-46. |
[9] | 陆文高, 苏振华, 齐晶 等. 基于小波变换的卫星故障诊断方法[J]. 国外电子测量技术, 2018, 37(2):30-33. |
[9] | LU Wengao, SU Zhenhua, QI Jing, et al. Method of satellite fault diagnosis based on wavelet translate[J]. Foreign Electronic Measurement Technology, 2018, 37(2):30-33. |
[10] | BALDI P, BLANKE M, CASTALDI P, et al. Combined geometric and neural network approach to generic fault diagnosis in satellite reaction wheels[J]. IFAC-PapersOnline, 2015, 48(21):194-199. |
[11] | 龚学兵, 王日新, 徐敏强. 飞轮传感器的高斯混合模型故障检测方法[J]. 宇航学报, 2015, 36(6):699-705. |
[11] | GONG Xuebing, WANG Rixin, XU Minqiang. Gaussian mixed model-based fault detection method for flywheel sensor[J]. Journal of Astronautics, 2015, 36(6):699-705. |
[12] | 王嘉轶, 闻新, 张婉怡. 卫星群反作用轮的故障诊断方法研究[J]. 中国空间科学技术, 2016, 36(4):24-32. |
[12] | WANG Jiayi, WEN Xin, ZHANG Wanyi. Fault diagnosis of reaction wheel in satellite formation[J]. Chinese Space Science and Technology, 2016, 36(4):24-32. |
[13] | MOUSAVI S, KHORASANI K. Fault detection of reaction wheels in attitude control subsystem of formation flying satellites: A dynamic neural network-based approach[J]. International Journal of Intelligent Unmanned Systems, 2014, 2(1):2-26. |
[14] | 王日新, 龚学兵, 徐敏强, 等. 飞轮系统的符号动力学故障检测方法[J]. 哈尔滨工业大学学报, 2016, 48(10):31-38. |
[14] | WANG Rixin, GONG Xuebing, XU Minqiang, et al. A symbolic dynamic analysis of flywheel system for fault detection[J]. Journal of Harbin Institute of Technology, 2016, 48(10):31-38. |
[15] | WANG R X, GONG X B, XU M Q, et al. Fault detection of flywheel system based on clustering and principal component analysis[J]. Chinese Journal of Aeronautics, 2015, 28(6):1676-1688. |
[16] | 李磊, 高永明, 吴止锾. 基于混沌吸引子的飞轮故障检测[J]. 北京航空航天大学学报, 2018, 44(9):1894-1902. |
[16] | LI Lei, GAO Yongming, WU Zhihuan. Fault detection for flywheels based on chaotic attractor[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(9):1894-1902. |
[17] | 赵琳, 王艺鹏, 郝勇. 在轨飞轮故障诊断混合框架设计[J]. 光学精密仪器, 2018, 26(7):1728-1740. |
[17] | ZHAO Lin, WANG Yipeng, HAO Yong. Design of hybrid frame for on-orbit flywheel fault diagnosis[J]. Optics and Precision Engineering, 2018, 26(7):1728-1740. |
[18] | BIALKE B. High fidelity mathematical modeling of reaction wheel performance[J]. Advances in the Astronautical Sciences, 1998, 98:483-496. |
[19] | TALBI H A, PATEL R V, KHORASANI K. Fault detection and isolation for uncertain nonlinear systems with application to a satellite reaction wheel actuator[C]// IEEE International Conference on Systems. Montreal, Canada: IEEE, 2007: 3140-3145. |
[20] | 刘翔. 卫星姿态控制系统故障模式分析与故障诊断研究[D]. 哈尔滨: 哈尔滨工业大学, 2015. |
[20] | LIU Xiang. Study on fault mode analysis and fault diagnosis of satellite attitude control system[D]. Harbin: Harbin Institute of Technology, 2015. |
[21] | LIU R N, YANG B Y, ZIO E, et al. Artificial intelligence for fault diagnosis of rotating machinery: A review[J]. Mechanical Systems and Signal Processing, 2018, 108:33-47. |
[22] | CHEN T Q, GUESTRIN C. XGBoost: A scalable tree boosting system[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY, USA: ACM, 2016: 785-794. |
[23] | IZADI V, ABEDI M, BOLANDI H. Supervisory algorithm based on reaction wheel modelling and spectrum analysis for detection and classification of electromechanical faults[J]. IET Science, Measurement & Technology, 2017, 11(8):1085-1093. |
/
〈 |
|
〉 |