Journal of Shanghai Jiaotong University >
A Compressor Power Soft-Sensing Method Based on Interpretable Neural Network Model
Received date: 2020-04-03
Online published: 2021-06-08
In order to ensure the accuracy and efficiency of measurement, and reduce the dependence of the soft sensing on dataset, a soft-sensing method of compressor power based on interpretable neural network is proposed. When training on a dataset with good generalization in the experiment, the root mean squared error(RMSE) of the interpretable neural network model on the test set is 0.0094, which is 1.1% lower than that of the back propagation(BP) neural network model. When training on a dataset with poor generalization, the RMSE of the interpretable neural network model on the test set is 0.0128, which is 79.8% lower than that of the BP neural network model. The experimental results show that the soft-sensing method based on interpretable neural network not only has a high accuracy rate, but also can maintain a good measurement performance when training on a dataset with poor generalization.
Key words: interpretability; neural network; soft-sensing method; compressor
WANG Yulin, ZHOU Dengji, HAO Jiarui, HUANG Dawen . A Compressor Power Soft-Sensing Method Based on Interpretable Neural Network Model[J]. Journal of Shanghai Jiaotong University, 2021 , 55(6) : 774 -780 . DOI: 10.16183/j.cnki.jsjtu.2020.086
[1] | 于静江, 周春晖. 过程控制中的软测量技术[J]. 控制理论与应用, 1996, 13(2):137-144. |
[1] | YU Jingjiang, ZHOU Chunhui. Soft-sensing techniques in process control[J]. Control Theory & Applications, 1996, 13(2):137-144. |
[2] | 孔祥志, 杨会林, 孙铜生. 滑片式压缩机功率计算模型的研究[J]. 流体机械, 2005, 33(1):25-27. |
[2] | KONG Xiangzhi, YANG Huilin, SUN Tongsheng. Study on the calculating model of power of vane compressor[J]. Fluid Machinery, 2005, 33(1):25-27. |
[3] | 王晓燕, 焦卫东, 朱利民. 变工况运行的制冷压缩机功率消耗的定量关系式研究[J]. 压缩机技术, 2019(1):6-10. |
[3] | WANG Xiaoyan, JIAO Weidong, ZHU Limin. Study on quantitative relationship formula about refrigeration compressor power consumption based on variable condition running[J]. Compressor Technology, 2019(1):6-10. |
[4] | 吉文鹏, 杨慧中. 基于自适应等距映射算法的软测量建模[J]. 南京理工大学学报, 2019, 43(3):269-274. |
[4] | JI Wenpeng, YANG Huizhong. Soft sensor modeling based on adaptive Isomap algorithm[J]. Journal of Nanjing University of Science and Technology, 2019, 43(3):269-274. |
[5] | 廉小亲, 王俐伟, 安飒, 等. 基于SOM-RBF神经网络的COD软测量方法[J]. 化工学报, 2019, 70(9):3465-3472. |
[5] | LIAN Xiaoqin, WANG Liwei, AN Sa, et al. On soft sensor of chemical oxygen demand by SOM-RBF neural network[J]. CIESC Journal, 2019, 70(9):3465-3472. |
[6] | 徐敏, 俞金寿. 软测量技术[J]. 石油化工自动化, 1998(2):1-3. |
[6] | XU Min, YU Jinshou. Soft measurement technology[J]. =Automation in Petro-Chemical Industry, 1998(2):1-3. |
[7] | 王美琪, 陈恩利, 刘鹏飞, 等. 融合机理与数据的篦冷机温度软测量模型[J]. 仪器仪表学报, 2018, 39(6):182-188. |
[7] | WANG Meiqi, CHEN Enli, LIU Pengfei, et al. Soft-testing model for grate cooler temperature measurement with mechanism and data fusion[J]. Chinese Journal of Scientific Instrument, 2018, 39(6):182-188. |
[8] | RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088):533-536. |
[9] | 倪志伟. BP网络中激活函数的深入研究[J]. 安徽大学学报(自然科学版), 1997, 21(3):48-51. |
[9] | NI Zhiwei. Deep study on activation function in BP network[J]. Journal of Anhui University (Natural Sciences) , 1997, 21(3):48-51. |
[10] | 张娜, 林汝谋, 蔡睿贤. 压气机特性通用数学表达式[J]. 工程热物理学报, 1996, 17(1):21-24. |
[10] | ZHANG Na, LIN Rumou, CAI Ruixian. General formulas for axial compressor performance estimation[J]. Journal of Engineering Thermophysics, 1996, 17(1):21-24. |
[11] | KINGMA D P, BA J. Adam: A method for stochastic optimization[EB/OL]. (2017-01-30) [2019-11-21]. https:∥arxiv.org/abs/1412.6980 . |
[12] | 张田, 潘尔顺. 基于时间序列分析的电容器退化模型[J]. 上海交通大学学报, 2019, 53(11):1316-1325. |
[12] | ZHANG Tian, PAN Ershun. Degradation modeling of capacitors based on time series analysis[J]. Journal of Shanghai Jiao Tong University, 2019, 53(11):1316-1325. |
[13] | 李军朋, 华长春, 关新平. 基于机理、数据和知识的大型高炉冶炼过程建模研究[J]. 上海交通大学学报, 2018, 52(10):1142-1154. |
[13] | LI Junpeng, HUA Changchun, GUAN Xinping. Modeling research for blast furnace smelting process based on smelting mechanism, operation data and expert knowledge[J]. Journal of Shanghai Jiao Tong University, 2018, 52(10):1142-1154. |
[14] | 胡晨星, 丁杰, 竺晓程, 等. 离心压气机蜗壳内非定常流场的动态模态分解[J]. 上海交通大学学报, 2018, 52(9):1044-1049. |
[14] | HU Chenxing, DING Jie, ZHU Xiaocheng, et al. Dynamic mode decomposition of unsteady flow filed in a volute of centrifugal compressor[J]. Journal of Shanghai Jiao Tong University, 2018, 52(9):1044-1049. |
[15] | 吴军, 黎国强, 吴超勇, 等. 数据驱动的滚动轴承性能衰退状态监测方法[J]. 上海交通大学学报, 2018, 52(5):538-544. |
[15] | WU Jun, LI Guoqiang, WU Chaoyong, et al. Data-driven performance degradation condition monitoring for rolling bearings[J]. Journal of Shanghai Jiao Tong University, 2018, 52(5):538-544. |
[16] | 陈进平, 张树生, 何卫平, 等. 基于驱动参数建模的可行更改路径搜索和优选方法[J]. 上海交通大学学报, 2017, 51(10):1220-1227. |
[16] | CHEN Jinping, ZHANG Shusheng, HE Weiping, et al. Feasible change path search and optimization method based on driving parameter modeling[J]. Journal of Shanghai Jiao Tong University, 2017, 51(10):1220-1227. |
/
〈 |
|
〉 |