Optimization and Performance Analysis of Desiccant Wheel-Assisted Atmospheric Water Harvesting Processes

Expand
  • School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China

Received date: 2020-06-22

  Online published: 2021-06-08

Abstract

To solve the fresh water scarce problem in dry regions, a desiccant wheel-assisted atmospheric water harvesting system is designed. Using water production rate as the index, studies are conducted to find the optimized air handling process under typical ambient conditions, considering influencing factors such as air flow rate ratio, stage numbers, and regeneration temperature. Based on a three-stage-desiccant wheel air humidification system, power consumptions are calculated for ideal and actual thermodynamic processes. Besides, using water production efficiency as the index, at the same water production rate, this system is compared with the traditional air-cooling method. The results show that this system has higher performances than the traditional air-cooling method. Under the discussed working conditions, the water production rate of the proposed system is in the range of 15.8—30.9 kg/h and the water production efficiency is in the range of 1.3—2.1 kg/(kW·h). The water production efficiency can be enhanced to 3.3—4.4 kg/(kW·h)when solar heater is used to replace heat pump systems. The proposed method can effectively enrich fresh water sources in dry regions.

Cite this article

TU Rang, LIU Mengdan, WANG Siqi . Optimization and Performance Analysis of Desiccant Wheel-Assisted Atmospheric Water Harvesting Processes[J]. Journal of Shanghai Jiaotong University, 2021 , 55(11) : 1392 -1400 . DOI: 10.16183/j.cnki.jsjtu.2020.193

References

[1] 国务院. 国务院关于实行最严格水资源管理制度的意见[EB/OL].(2012-02-15) [2020-05-07] http://www.gov.cn/zhuanti/2015-06/13/content_2878992.htm.
[1] State Council. Opinions of the state council on implementing the strictest water resources management system[EB/OL]. (2012-02-15) [2020-05-07] http://www.gov.cn/zhuanti/2015-06/13/content_2878992.htm.
[2] 国家发改委. 中国节水技术政策大纲[EB/OL]. (2005-04-21) [2020-05-07]. https://www.ndrc.gov.cn/fggz/hjyzy/sjyybh/200506/t20050602_1133933.html?code=&state=123.
[2] National Development and Reform Commission. Outline of China’s water saving technology policy[EB/OL].(2005-04-21) [2020-05-07]. https://www.ndrc.gov.cn/fggz/hjyzy/sjyybh/200506/t20050602_1133933.html?code=&state=123.
[3] 罗继杰, 张蔚东, 白小步. 野外作业用空气取水设备研究与应用[J]. 暖通空调, 2004, 34(4):42-45.
[3] LUO Jijie, ZHANG Weidong, BAI Xiaobu. Development and application of a field water maker[J]. Heating Ventilating & Air Conditionin, 2004, 34(4):42-45.
[4] 杨留田. 通过冷却空气制水的制冷系统研究[D]. 天津: 天津商业大学, 2013.
[4] YANG Liutian. Study of refrigeration system on water production through cooling air[D]. Tianjin: Tianjin University of Commerce, 2013.
[5] 张瑞贤, 臧润清, 刘建勋. 全工况下冷却空气取水装置性能的实验研究[J]. 制冷技术, 2016, 44(1):51-55.
[5] ZHANG Ruixian, ZANG Runqing, LIU Jianxun. Study on properties of water extraction from cooled air system under all operating conditions[J]. Cryogenics & Superconductivity, 2016, 44(1):51-55.
[6] ZOLFAGHARKHANI S, ZAMEN M, SHAHMARDAN M M. Thermodynamic analysis and evaluation of a gas compression refrigeration cycle for fresh water production from atmospheric air[J]. Energy Convers Manage, 2018, 170(15):97-107.
[7] 曹旦, 邹钺. 半导体制冷空气取水系统的优化研究[J]. 建筑热能通风空调, 2016, 35(9):71-73.
[7] CAO Dan, ZOU Yue. system optimization of water exaction from air by semiconductor cooling air[J]. Building Energy & Environment, 2016, 35(9):71-73.
[8] 许辉. 基于半导体制冷技术的空气取水装置的实验研究[D]. 杭州: 杭州电子科技大学, 2014.
[8] XU Hui. The experimental study of the water intake device based on the semiconductor refrigeration[D]. Hangzhou: Hangzhou Dianzi University, 2014.
[9] ESLAMI M, TAJEDDINI F, ETAATI N. Thermal analysis and optimization of a system for water harvesting from humid air using thermoelectric coolers[J]. Energy Conversion and Management, 2018, 174:417-429.
[10] LIU S S, HE W, HU D Y, et al. Experimental ana-lysis of a portable atmospheric water generator by thermoelectric cooling method[J]. Energy Procedia, 2017, 142:1609-1614.
[11] JOSHI V P, JOSHI V S, KOTHARI H A, et al. Experimental investigations on a portable fresh water generator using a thermoelectric cooler[J]. Energy Procedia, 2017, 109:161-166.
[12] JRADI M, GHADDAR N, GHALI K. Experimental and theoretical study of an integrated thermoelectric-photovoltaic system for air dehumidification and fresh water production[J]. International Journal of Energy Research, 2012, 36(9):963-974.
[13] 刘金亚, 王佳韵, 王丽伟, 等. 一种吸附式空气取水装置的性能实验[J]. 化工学报, 2016, 67(Sup.2):46-50.
[13] LIU Jinya, WANG Jiayun, WANG Liwei, et al. Performance test of sorption air-to-water device[J]. CIESC Journal, 2016, 67(Sup.2):46-50.
[14] 杨凡, 张海全. 空气取水用套管式吸附床的吸附特性[J]. 化工进展, 2016, 35:48-52.
[14] YANG Fan, ZHANG Haiquan. Experimental investigation of adsorption properties of double-pipe adsorption bed for water sorption[J]. Chemical Industry and Engineering Progress, 2016, 35:48-52.
[15] SRIVASTAVA S, YADAV A. Water generation from atmospheric air by using composite desiccant material through fixed focus concentrating solar thermal power[J]. Solar Energy, 2018, 169:302-315.
[16] MOHAMED M H, WILLIAM G E, FATOUH M. Solar energy utilization in water production from humid air[J]. Solar Energy, 2017, 148:98-109
[17] 王雯雯, 葛天舒, 代彦军, 等. 太阳能吸附式空气取水研究现状[J]. 太阳能, 2020(1):33-46.
[17] WANG Wenwen, GE Tianshu, DAI Yanjun, et al. Status of solar-driven sorption-based atmosphere water harvesting[J]. Solar Energy, 2020(1):33-46.
[18] 侴乔力, 卢军, 马春青. 一种改进的太阳能吸附式空气取水器[J]. 太阳能学报, 2005, 26(5):128-131.
[18] YE Qiaoli, LU Jun, MA Chunqing. An improved solar air absorption water collector[J]. Acta Energiae Solaris Sinica, 2005, 26(5):128-131.
[19] 刘业凤, 范宏武, 王如竹. 新型复合吸附剂SiO2·xH2yCaCl2与常用吸附剂空气取水性能的对比实验研究[J]. 太阳能学报, 2003, 24(2):141-144.
[19] LIU Yefeng, FAN Hongwu, WANG Ruzhu. Contrast experimental study on the air intake performance of the new composite adsorbent SiO2·xH2yCaCl2 and common adsorbents[J]. Acta Energiae Solaris Sinica, 2003, 24(2):141-144.
[20] 赵惠忠, 刘涛, 黄天厚, 等. 石墨烯-13X/LiCl 复合吸附剂开式吸附-解吸性能[J]. 化工进展, 2021, 40(2):969-976.
[20] ZHAO Huizhong, LIU Tao, HUANG Tianhou, et al. Open adsorption-desorption performance of graphene-13X/LiCl composite adsorbents[J]. Chemical Industry and Engineering Progress, 2021, 40(2):969-976.
[21] TU R, HWANG Y. Reviews of atmospheric water harvesting technologies[J]. Energy, 2020, 201:117630.
[22] TU R, HWANG Y, CAO T, et al. Investigation of adsorption isotherms and rotational speeds for low temperature regeneration of desiccant wheel systems[J]. International Journal of Refrigeration, 2018, 86:495-509.
[23] TU R, HWANG Y. Performance analyses of a new system for water harvesting from moist air that combines multi-stage desiccant wheels and vapor compression cycles[J]. Energy Conversion and Management, 2019, 198:111811.
[24] 彭佳杰, 潘权稳, 葛天舒, 等. 太阳能热驱动的吸附式冷热联供系统性能测试[J]. 上海交通大学学报, 2020, 54(7):661-667.
[24] PENG Jiajie, PAN Quanwen, GE Tianshu, et al. Performance test of an adsorption cooling and heating cogeneration system driven by solar thermal energy[J]. Journal of Shanghai Jiao Tong University, 2020, 54(7):661-667.
Outlines

/