Journal of Shanghai Jiaotong University >
A Novel Prediction Model for Fatigue Strength
Received date: 2021-02-10
Online published: 2021-06-08
Fatigue failure is one of the most important reasons for the failure of engineering application components. However, due to the high cost of fatigue experiments, it is necessary to use mechanical properties to predict fatigue strength. Based on the true stress-strain curves, a novel model for fatigue strength prediction is established and is used to calculate the fatigue strength. The strength predicted is compared with that calculated by the staircase method and the Basquin equation. The results show that the model could obtain the fatigue strength of the materials only by using tensile strength and work-hardening strength, and it is suitable for other steels, which greatly saves costs and increases accuracy.
DUAN Hongyan, TANG Guoxin, SHENG Jie, CAO Mengjie, PEI Lei, TIAN Hongwei . A Novel Prediction Model for Fatigue Strength[J]. Journal of Shanghai Jiaotong University, 2022 , 56(6) : 801 -808 . DOI: 10.16183/j.cnki.jsjtu.2021.051
[1] | MURAKAMI Y. Metal fatigue: Effects of small defects and nonmetallic inclusions[M]. Kidlington, UK: Elsevier, 2002. |
[2] | OSMOND P, LE V D, MOREL F, et al. Effect of porosity on the fatigue strength of cast aluminium alloys: From the specimen to the structure[J]. Procedia Engineering, 2018, 213: 630-643. |
[3] | 张健. 非均匀层片结构低碳钢的力学行为研究[D]. 北京: 中国科学院大学, 2017. |
[3] | ZHANG Jian. Research on the mechanical behavior of low carbon steel with non-uniform layer structure[D]. Beijing: University of Chinese Academy of Sciences, 2017. |
[4] | 丁明超, 张元良, 咸宏伟, 等. 基于微观划痕的疲劳强度预测[J]. 东北大学学报(自然科学版), 2020, 41(5): 693-699. |
[4] | DING Mingchao, ZHANG Yuanliang, XIAN Hongwei, et al. Fatigue strength prediction based on micro scratches[J]. Journal of Northeastern University (Natural Science), 2020, 41(5): 693-699. |
[5] | HAGIWARA M, KITAURA T, ONO Y, et al. Relationship among tensile strength, high cycle fatigue strength, and origin of fatigue crack initiation in a minor boron (B)-modified β-type Ti-6.8Mo-4.5Fe-1.5Al alloy[J]. Metallurgical and Materials Transactions A, 2021, 52(2): 806-816. |
[6] | 刘平. 7B50铝合金板材疲劳极限强度及S-N曲线的测定[J]. 铝加工, 2017(3): 26-30. |
[6] | LIU Ping. Determination of fatigue ultimate strength and S-N curve for 7B50 aluminum alloy plate[J]. Aluminium Fabrication, 2017(3): 26-30. |
[7] | MÜLLER C, WÄCHTER M, MASENDORF R, et al. Accuracy of fatigue limits estimated by the staircase method using different evaluation techniques[J]. International Journal of Fatigue, 2017, 100: 296-307. |
[8] | GAZIZOV M, KAIBYSHEV R. High cyclic fatigue performance of Al-Cu-Mg-Ag alloy under T6 and T840 conditions[J]. Transactions of Nonferrous Me-tals Society of China, 2017, 27(6): 1215-1223. |
[9] | 崔友久, 惠卫军, 张永健, 等. 连铸与模铸高铁车轴钢的高周疲劳破坏行为[J]. 中国冶金, 2019, 29(12): 31-39. |
[9] | CUI Youjiu, HUI Weijun, ZHANG Yongjian, et al. Comparison of high-cycle fatigue properties of continuous casting and mould casting axle steels[J]. China Metallurgy, 2019, 29(12): 31-39. |
[10] | 耿思远, 杨卯生, 赵昆渝. 温度对高钴钼不锈轴承钢高周疲劳性能的影响[J]. 钢铁, 2018, 53(12): 77-85. |
[10] | GENG Siyuan, YANG Maosheng, ZHAO Kunyu. Influence of temperature on high cycle fatigue properties of high cobalt molybdenum stainless bearing steel[J]. Iron and Steel, 2018, 53(12): 77-85. |
[11] | 高彩茹, 朱长友, 张大伟, 等. 车轮轮辐钢S500LF的疲劳性能[J]. 东北大学学报(自然科学版), 2020, 41(8): 1148-1152. |
[11] | GAO Cairu, ZHU Changyou, ZHANG Dawei, et al. Fatigue property of spoke steel S500LF[J]. Journal of Northeastern University (Natural Science), 2020, 41(8): 1148-1152. |
[12] | QU C, ZHOU H W, ZOU X F. Experimental study on random vibration fatigue S-N curve of GH188 alloy under high temperature environment[C]∥Proceedings of the 2018 International Conference on Mechanical, Electronic, Control and Automation Engineering. Paris, France: Atlantis Press, 2018: 201-205. |
[13] | MLIKOTA M, SCHMAUDER S, BOŽIĆ Ž. Calculation of the Wöhler (S-N) curve using a two-scale model[J]. International Journal of Fatigue, 2018, 114: 289-297. |
[14] | 王举金, 阳光武, 杨冰, 等. 基于结构应力法的环焊结构S-N曲线分析[J]. 焊接学报, 2019, 40(8): 63-68. |
[14] | WANG Jujin, YANG Guangwu, YANG Bing, et al. S-N curve analysis of ring welding based on structural stress method[J]. Transactions of the China Welding Institution, 2019, 40(8): 63-68. |
[15] | 谢学涛, 何柏林, 邓海鹏. MB8镁合金焊接接头超高周疲劳性能[J]. 兵器材料科学与工程, 2018, 41(1): 20-23. |
[15] | XIE Xuetao, HE Bolin, DENG Haipeng. Ultra high cycle fatigue properties of MB8 magnesium alloy welded joint[J]. Ordnance Material Science and Enginee-ring, 2018, 41(1): 20-23. |
[16] | PANG J C, LI S X, WANG Z G, et al. General relation between tensile strength and fatigue strength of metallic materials[J]. Materials Science and Engineering: A, 2013, 564: 331-341. |
[17] | ZHANG M X, PANG J C, LI S X, et al. The effect of tailored deformation on fatigue strength of austenitic 316L stainless steel[J]. Advanced Engineering Materials, 2018, 20(11): 1800554. |
[18] | LIU Y B, LI Y D, LI S X, et al. Prediction of the S-N curves of high-strength steels in the very high cycle fatigue regime[J]. International Journal of Fatigue, 2010, 32(8): 1351-1357. |
[19] | NAITO T, UEDA H, KIKUCHI M. Fatigue behavior of carburized steel with internal oxides and nonmartensitic microstructure near the surface[J]. Me-tallurgical Transactions A, 1984, 15(7): 1431-1436. |
[20] | DUAN Q Q, PANG J C, ZHANG P, et al. Quantitative relations between S-N curve parameters and tensile strength for two steels: AISI 4340 and SCM 435[J]. Research & Reviews: Journal of Material Science, 2018, 6(1): 1-16. |
[21] | MARSAVINA L, IACOVIELLO F, DAN PIRVULESCU L, et al. Engineering prediction of fatigue strength for AM50 magnesium alloys[J]. International Journal of Fatigue, 2019, 127: 10-15. |
/
〈 |
|
〉 |