Shear Layer and Wake Characteristics of Square Cylinder in Transonic Flow

Expand
  • Key Laboratory of Aircraft Environment Control and Life Support of the Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2019-10-18

  Online published: 2021-04-30

Abstract

The transonic flow around a square cylinder at Ma= 0.71 and Re= 4×105 has been studied by using the scale-adaptive simulation (SAS) method, and the characteristics of separated shear layer and wake have been analyzed in depth. To validate the SAS approach, the SAS results are compared with the existing numerical and experimental results. In the present transonic flow, the convective Mach number inside the shear layer is about 0.6. This indicates that the initial evolution of the separated shear layer is dominated by Kelvin-Helmholtz instability, and the roller spanwise eddies in the initial stage of the shear layer can be observed. In the regions near the shear layer and the wake, the doubling frequencies can be obtained indicative of the harmonic phenomenon inside the separated shear layer, which is closely related to the obvious merging of the vortices in the shear layer. Proper orthogonal decomposition of the pressure field shows that the transonic flow field of square cylinder is dominated by the antisymmetric mode, which is associated with the vortex shedding in the wake and the propagation of compression waves induced by the shear layer.

Cite this article

XU Changyue, ZHENG Jing, WANG Zhe, WANG Bin . Shear Layer and Wake Characteristics of Square Cylinder in Transonic Flow[J]. Journal of Shanghai Jiaotong University, 2021 , 55(4) : 403 -411 . DOI: 10.16183/j.cnki.jsjtu.2019.299

References

[1] WILLIAMSON C K. Vortex dynamics in the cylinder wake[J]. Annual Review of Fluid Mechanics, 1996, 28(1):477-539.
[2] MACHA J M. Drag of circular cylinders at transonic Mach numbers[J]. Journal of Aircraft, 1977, 14(6):605-607.
[3] XU C Y, CHEN L W, LU X Y. Effect of Mach number on transonic flow past a circular cylinder[J]. Chinese Science Bulletin, 2009, 54(11):1886-1893.
[4] MURAKAMI S, IIZUKA S, OOKA R. CFD analysis of turbulent flow past square cylinder using dynamic LES[J]. Journal of Fluids and Structures, 1999, 13(7/8):1097-1112.
[5] 邓小兵, 张涵信, 李沁. 三维方柱不可压缩绕流的大涡模拟计算[J]. 空气动力学学报, 2008, 26(2):167-172.
[5] DENG Xiaobing, ZHANG Hanxin, LI Qin. Large eddy simulation of 3-dimensional incompressible flow around a square cylinder[J]. Acta Aerodynamica Sinica, 2008, 26(2):167-172.
[6] 唐鹏, 韩省思, 叶桃红, 等. 联合RANS/LES方法数值模拟方柱绕流[J]. 中国科学技术大学学报, 2010, 40(12):1287-1292.
[6] TANG Peng, HAN Xingsi, YE Taohong, et al. Hybrid RANS/LES simulation of flow past a square cy-linder[J]. Journal of University of Science and Technology of China, 2010, 40(12):1287-1292.
[7] MINGUEZ M, BRUN C, PASQUETTI R, et al. Experimental and high-order LES analysis of the flow in near-wall region of a square cylinder[J]. International Journal of Heat and Fluid Flow, 2011, 32(3):558-566.
[8] TRIAS F X, GOROBETS A, OLIVA A. Turbulent flow around a square cylinder at Reynolds number 22,000: A DNS study[J]. Computers & Fluids, 2015, 123:87-98.
[9] BAI W, MINGHAM C G, CAUSON D M, et al. Detached eddy simulation of turbulent flow around square and circular cylinders on Cartesian cut cells[J]. Ocean Engineering, 2016, 117:1-14.
[10] 李真子, 林自城, 高志栋, 等. Reynolds数22000的孤立方柱绕流的大涡模拟[J]. 气体物理, 2017, 2(3):17-23.
[10] LI Zhenzi, LIN Zicheng, GAO Zhidong, et al. Large-eddy simulation of flow around isolated square cylinder at Reynolds number 22000[J]. Physics of Gases, 2017, 2(3):17-23.
[11] NAKAGAWA T. Vortex shedding behind a square cylinder in transonic flows[J]. Journal of Fluid Mechanics, 1987, 178:303-323.
[12] JACOBS G B, KOPRIVA D A, MASHAYEK F. Compressible subsonic particle-laden flow over a square cylinder[J]. Journal of Propulsion and Power, 2004, 20(2):353-359.
[13] LAYUKALLO T, NAKAMURA Y. Passive separation control on a square cylinder at transonic speed[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, 2003, 45(150):236-242.
[14] XUE D W, CHEN Z H, JIANG X H. Investigations on the flow fields of hypersonic flow past the wall-mounted square cylinder with various heights[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, 2013, 56(4):223-228.
[15] 许常悦, 王从磊, 刘可. 绕方柱可压缩湍流的大涡模拟[C]//中国力学大会-2013会议论文集. 西安: 中国力学学会, 2013: CSTAM2013-A31-1140.
[15] XU Changyue, WANG Conglei, LIU Ke. Large-eddy simulation of the compressible flow turbulent flow past a square cylinder[C]//Conference proceedings of Chinese Congress of Theoretical and AppliedMechanics 2013. Xi'an: The Chinese Society of Theoretical and Applied Mechanics, 2013: CSTAM2013-A31-1140.
[16] SPALART P R, DECK S, SHUR M L, et al. A new version of detached-eddy simulation, resistant to ambiguous grid densities[J]. Theoretical and Computational Fluid Dynamics, 2006, 20(3):181-195.
[17] SHUR M L, SPALART P R, STRELETS M K, et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat and Fluid Flow, 2008, 29(6):1638-1649.
[18] MENTER F, KUNTZ M, BENDER R. A scale-adaptive simulation model for turbulent flow predictions[C]//41st Aerospace Sciences Meeting and Exhibit. Reston, Virginia: AIAA, 2003:1-11.
[19] MENTER F, EGOROV Y. A scale adaptive simulation model using two-equation models[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virginia: AIAA, 2005: 1-13.
[20] XU C Y, ZHOU T, WANG C L, et al. Applications of scale-adaptive simulation technique based on one-equation turbulence model[J]. Applied Mathematics and Mechanics, 2015, 36(1):121-130.
[21] XU C Y, ZHANG T, YU Y Y, et al. Effect of von Karman length scale in scale adaptive simulation app-roach on the prediction of supersonic turbulent flow[J]. Aerospace Science and Technology, 2019, 86:630-639.
[22] XU C Y, CHEN L W, LU X Y. Large-eddy simulation of the compressible flow past a wavy cylinder[J]. Journal of Fluid Mechanics, 2010, 665:238-273.
[23] XU C Y, NI Z Q. Novel characteristics of wavy cylinder in supersonic turbulent flow[J]. European Journal of Mechanics-B/Fluids, 2018, 67:158-167.
[24] CHEN L W, XU C Y, LU X Y. Numerical investigation of the compressible flow past an aerofoil[J]. Journal of Fluid Mechanics, 2010, 643:97-126.
[25] SIMON F, DECK S, GUILLEN P, et al. Numerical simulation of the compressible mixing layer past an axisymmetric trailing edge[J]. Journal of Fluid Mechanics, 2007, 591:215-253.
[26] WU J Z, LU X Y, ZHUANG L X. Integral force acting on a body due to local flow structures[J]. Journal of Fluid Mechanics, 2007, 576:265-286.
[27] HAMMAN C W, KLEWICKI J C, KIRBY R M. On the Lamb vector divergence in Navier-Stokes flows[J]. Journal of Fluid Mechanics, 2008, 610:261-284.
[28] NA Y, MOIN P. The structure of wall-pressure fluctuations in turbulent boundary layers with adverse pressure gradient and separation[J]. Journal of Fluid Mechanics, 1998, 377:347-373.
[29] DONG Y F, WEI Z L, XU C. Transition of separated shear layer from order to chaos[J]. Physics of Fluids, 1997, 9(9):2580-2584.
[30] BERKOOZ G, HOLMES P, LUMLEY J L. The proper orthogonal decomposition in the analysis of turbulent flows[J]. Annual Review of Fluid Mechanics, 1993, 25(1):539-575.
[31] 许常悦, 王从磊, 孙建红. 圆柱跨声速绕流中的激波/湍流相互作用大涡模拟研究[J]. 空气动力学学报, 2012, 30(1):22-27.
[31] XU Changyue, WANG Conglei, SUN Jianhong. Large eddy simulation of shock-wave/turbulence interaction in the transonic flow over a circular cylinder[J]. Acta Aerodynamica Sinica, 2012, 30(1):22-27.
Outlines

/