Journal of Shanghai Jiaotong University >
A Traffic Congestion Prediction Model Based on Dilated-Dense Network
Received date: 2019-10-29
Online published: 2021-03-03
When using the convolutional neural network (CNN) model to predict short-term traffic congestion, due to the convolution pooling operation of the model, part of the data for the information of the target position will be lost, resulting in the decline of the resolution of the output features and the decrease in the predictive ability of the model. To solve this problem, this paper proposes a dilated-dense neural network model. First, it uses dilated convolution to obtain the characteristics of a larger receptive field with fewer network parameters, and fully extracts complex and variable data spatio-temporal characteristics. Then, through down-sampling and equivalent mapping of dense network, it solves the problem of parameter degradation in the process of increasing layers of neural network. Finally, it uses the actual urban road average speed data blocks to verify the validity of the model. The results show that compared with the convolutional neural network model, the average absolute error of the network structure prediction is reduced by 3% to 23%.
SHI Min, CAI Shaowei, YI Qingming . A Traffic Congestion Prediction Model Based on Dilated-Dense Network[J]. Journal of Shanghai Jiaotong University, 2021 , 55(2) : 124 -130 . DOI: 10.16183/j.cnki.jsjtu.2020.99.009
[1] | CHEN P, DING C, LU G, et al. Short-term traffic states forecasting considering spatial-temporal impact on an urban expressway[J]. Transportation Research Record, 2016, 2594(1): 61-72. |
[2] | ZHANG W, YU Y, QI Y. Short-term traffic flow prediction based on spatio-temporal analysis and CNN deep learning[J]. Transportation Research Record, 2019, 15 (2): 1688-1711. |
[3] | 陈琛,吴青,高嵩.基于时空因素的水路短期货运量预测[J]. 上海交通大学学报,2019, 53 (5): 556-562. |
[3] | CHEN Chen, WU Qing, GAO Song. Short-term shipping freight volume prediction based on temporal-spatial features [J]. Journal of Shanghai Jiao Tong University, 2019, 53(5): 556-562. |
[4] | FENG X, LING X, ZHENG H, et al. Adaptive multi-kernel SVM with spatial-temporal correlation for short-term traffic flow prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 20(6): 2001-2013. |
[5] | 罗文慧,董宝田,王泽胜.基于CNN-SVR混合深度学习模型的短时交通流预测[J]. 交通运输系统工程与信息,2017, 17(5): 68-74. |
[5] | LUO Wenhui, DONG Baotian, WANG Zesheng. Short-term traffic flow prediction based on CNN-SVR hybrid deep learning model [J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(5): 68-74. |
[6] | DENG S, JIA S, CHEN J. Exploring spatial-temporal relations via deep convolutional neural networks for traffic flow prediction with incomplete data[J]. Applied Soft Computing, 2019, 78(3): 712-721. |
[7] | LIN F, XU Y, YANG Y, et al. A Spatial-temporal hybrid model for short-term traffic prediction[J]. Mathematical Problems in Engineering, 2019, 29(1): 1-12. |
[8] | KANG D, LV Y, CHEN Y. Short-term traffic flow prediction with LSTM recurrent neural network[C]∥2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC). Piscataway, NJ, USA: IEEE, 2017: 1-6. |
[9] | AN J, FU L, HU M, et al. A novel fuzzy-based convolutional neural network method to traffic flow prediction with uncertain traffic accident information[J]. IEEE Access, 2019, 21(1): 20708-20722. |
[10] | WANG P, LI L, JIN Y, et al. Detection of unwanted traffic congestion based on existing surveillance system using in freeway via a CNN-architecture tra-fficNet [C]∥2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA). Piscataway, NJ, USA: IEEE,2018: 1134-1139. |
[11] | 张伟斌,余英豪,戚湧,等. 基于时空分析和CNN的交通流量短时预测方法[C]∥第十三届中国智能交通年会大会.北京: 电子工业出版社,2018: 349-361. |
[11] | ZHANG Weibin, YU Yinghao, QI Yong, et al. Short-term traffic flow prediction based on spatio temporal analysis and CNN deep learning[C]∥The 13th China Intelligent Transportation Annual Meeting. Beijing: Publishing House of Electronics Industry, 2018: 349-361. |
[12] | LIU Q, WANG B, ZHU Y, et al. Short-term traffic speed forecasting based on attention convolutional neural network for arterials[J]. Computer-Aided Civil and Infrastructure Engineering, 2018, 33(11): 999-1016. |
[13] | YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[C]∥International Conference on Learning Representations (ICLR). Montevideo, Uruguay: IEEE, 2016: 1-13. |
[14] | HUANG G, LIU Z, VAN DER, et al. Densely connected convolutional networks[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2017: 2261-2269. |
[15] | DOLZ J, GOPINATH K, YUAN J, et al. Hyperdense-Net: A hyper-densely connected CNN for multi-modal image segmentation[J]. IEEE Transactions on Medical Imaging, 2018, 38(5): 1-13. |
[16] | ZHANG C, ZHANG H, YUAN D, et al. Citywide cellular traffic prediction based on densely connected convolutional neural networks[J]. IEEE Communications Letters, 2018, 22(8): 1656-1659. |
[17] | KINGMA D K, BA J L. Adam: A method for stochastic optimization[C]∥International Conference for Learning Representations (ICLR). Montevideo, Uruguay: IEEE, 2018: 6980-6995. |
/
〈 |
|
〉 |