Effects of Short-Term Aging and Creasing Damage on Air Leakage Properties of Airship Envelope Materials

Expand
  • 1. School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; 2. Space Structures Research Centre, Shanghai Jiao Tong University, Shanghai 200240, China; 3. Special Aircraft Research Institute, Jingmen 448000, Hubei, China

Received date: 2019-06-20

  Online published: 2020-12-04

Abstract

Aging and creasing damage of the airship envelope materials would affect the air leakage, which is a key factor in determining the duration of a single flight of an airship. In this paper, Uretek3216-LV, a high barrier property envelope material, was used to conduct a flexural durability test across five different aging timelines (0,1, 3, 8, 12 months) under four different flex conditions (20,270,900,2700 cycles) with an air leakage test in all samples. The data was analyzed using the least square method and the principle of the residual sum of squares. The relationship curves and fitted surfaces between the pressure difference, the number of rubbing times, as well as the above two factors and the air leakage rate were obtained. The influence degree of aging and creasing damage on the air leakage rate of the material was analyzed. The deformation process of the material damage was observed by scanning the material with an electron microscope and the failure mechanism was analyzed. The results show that the short-term aging damage has little effect on the air leakage properties of the envelope materials but the creasing damage will seriously affect the air leakage properties. The air leakage is proportional to the pressure difference, and the relationship between the air leakage rate and the number of flex cycles is changed from the nonlinear positive correlation of the initial segment to the linear relationship. The failure process undergoes three stages, which are the stage of loosening and twisting of fiber, the stage of functional layer failure, and the stage of fiber breakage leading to formation of pin hole. The results obtained can provide reference for the analysis and design of the airship envelope structure.

Cite this article

ZHANG Yunhao,Alimu·Anwaier,MI Xiang,ZHANG Daxu,CHEN Wujun,LU Guofu,ZHANG Jinkui . Effects of Short-Term Aging and Creasing Damage on Air Leakage Properties of Airship Envelope Materials[J]. Journal of Shanghai Jiaotong University, 2020 , 54(11) : 1189 -1199 . DOI: 10.16183/j.cnki.jsjtu.2019.170

References

[1]祝明, 陈天, 梁浩全, 等. 临近空间浮空器研究现状与发展展望[J]. 国际航空, 2016(1): 22-25. ZHU Ming, CHEN Tian, LIANG Haoquan, et al. Near-space airships outlook[J]. International Avi-ation, 2016(1): 22-25. [2]舒恪晟, 熊伟, 李云仲, 等. 半硬式临近空间飞艇结构设计技术研究[J]. 飞机设计, 2014, 34(2): 17-22. SHU Kesheng, XIONG Wei, LI Yunzhong, et al. Study of structure design technology for semi-rigid near space airship[J]. Aircraft Design, 2014, 34(2): 17-22. [3]谭惠丰, 刘羽熙, 刘宇艳, 等. 临近空间飞艇蒙皮材料研究进展和需求分析[J]. 复合材料学报, 2012, 29(6): 1-8. TAN Huifeng, LIU Yuxi, LIU Yuyan, et al. Research progress and requirement analysis of envelope materials for near space airship[J]. Acta Materiae Compositae Sinica, 2012, 29(6): 1-8. [4]程书通, 张云浩, 杜嘉豪, 等. 老化与折皱损伤对飞艇囊体材料单轴拉伸力学性能影响[J]. 东华大学学报(自然科学版), 2020, 46(2): 194-201. CHENG Shutong, ZHANG Yunhao, DU Jiaohao, et al. Effects of aging and creasing on uni-axial tensile properties of airship envelope materials[J]. Journal of Donghua University (Science and Technology), 2020, 46(2): 194-201. [5]陈建稳, 周涵, 陈务军, 等. 飞艇用层压织物膜材料在双向应力作用下的弹性参数分析[J]. 上海交通大学学报, 2017, 51(3): 344-352. CHEN Jianwen, ZHOU Han, CHEN Wujun, et al. Analysis of elastic parameters for laminated fabrics used in airships under biaxial stresses[J]. Journal of Shanghai Jiao Tong University, 2017, 51(3): 344-352. [6]HU J H, CHEN W J, FAN P X, et al. Epoxy shape memory polymer (SMP): Material preparation, uniaxial tensile tests and dynamic mechanical analysis[J]. Polymer Testing, 2017, 62: 335-341. [7]陈建稳, 陈务军, 侯红青, 等. 织物类蒙皮材料中心切缝撕裂破坏强度分析[J]. 复合材料学报, 2016, 33(3): 666-674. CHEN Jianwen, CHEN Wujun, HOU Hongqing, et al. Analysis on tearing strength of envelope fabric materials under central crack tearing[J]. Acta Materiae Compositae Sinica, 2016, 33(3): 666-674. [8]鲁国富, 邱振宇, 高成军, 等. 基于双轴拉伸试验的飞艇蒙皮材料非线性分析[J]. 复合材料学报, 2018, 35(5): 1166-1171. LU Guofu, QIU Zhenyu, GAO Chengjun, et al. Nonlinear analysis based on biaxial tensile test of airship envelope fabrics[J]. Acta Materiae Compositae Sinica, 2018, 35(5): 1166-1171. [9]朱利君, 沈克利, 付功义. 充气囊体结构变形的数值模拟分析[J]. 空间结构, 2015, 21(3): 71-76. ZHU Lijun, SHEN Keli, FU Gongyi. Numerical simulation analysis on deformation of inflated membrane structure[J]. Spatial Structures, 2015, 21(3): 71-76. [10]HU J H, GAO C J, HE S Z, et al. Effects of on-axis and off-axis tension on uniaxial mechanical properties of plain woven fabrics for inflated structures[J]. Composite Structures, 2017, 171: 92-99. [11]CHEN W J, GAO C J, ZHANG D X, et al. A new biaxial tensile shear test method to measure shear behaviour of coated fabrics for architectural use[J]. Composite Structures, 2018, 203: 943-951. [12]何世赞, 陈务军, 高成军, 等. 浮空器蒙皮膜复合材料单轴拉伸力学性能及弹性常数[J]. 复合材料学报, 2017, 34(1): 224-230. HE Shizan, CHEN Wujun, GAO Chengjun, et al. Uni-axial tensile mechanical properties and elastic constants of airship envelope material[J]. Acta Materiae Compositae Sinica, 2017, 34(1): 224-230. [13]SHI T B, CHEN W J, GAO C J, et al. Shear beha-vior of architectural coated fabrics under biaxial bias-extension[J]. Construction and Building Materials, 2018, 187: 964-973. [14]HU J H, CHEN W J, LI Y P, et al. A triaxial tensile machine for three-dimensional membrane components: Experimental investigations and numerical simulations[J]. Polymer Testing, 2018, 65: 206-216. [15]王利钢, 陈务军, 高成军. 聚酯纤维机织物-聚氯乙烯-聚偏氟乙烯膜材双轴剪切力学性能试验[J]. 复合材料学报, 2015, 32(4): 1118-1124. WANG Ligang, CHEN Wujun, GAO Chengjun. Test on biaxial shear mechanical performance of polyester fabric-polyvinyl chloride-polyvinylidene fluoride membrane[J]. Acta Materiae Compositae Sinica, 2015, 32(4): 1118-1124. [16]陈宇峰, 陈务军, 邱振宇. 柔性飞艇主气囊不稳定构型阶段力学性能分析[J]. 上海交通大学学报, 2015, 49(9): 1422-1428. CHEN Yufeng, CHEN Wujun, QIU Zhenyu. Mechanical characteristic analysis of flexible airship envelop at unstable configuration stage[J]. Journal of Shanghai Jiao Tong University, 2015, 49(9): 1422-1428. [17]INCEM E, YILDIRIM H. Air permeability and bursting strength of weft-knitted fabrics from glass yarn. Part II: knit architecture effect[J]. The Journal of The Textile Institute, 2019, 110(7): 1072-1084. [18]林超, 朱锐钿, 黎丽娟, 等. 聚乙二醇/氧化锑锡纳米复合纤维结构及保温透气性能[J]. 化工进展, 2019, 38(5): 2293-2298. LIN Chao, ZHU Ruixi, LI Lijuan, et al. Structure, thermal insulation and air permeability of PVA/ATO nanocomposite fiber[J]. Chemical industry and Engineering Progress, 2019, 38(5): 2293-2298. [19]GUO J Y, WANG J Y, WU K. Effects of self-healing on tensile behavior and air permeability of high strain hardening UHPC[J]. Construction and Building Materials, 2019, 204: 342-356. [20]佐同林, 王子鹤, 莫振恩. 主成分回归分析法在精纺毛织物透气性与结构参数关系模型构建中的应用[J]. 毛纺科技, 2015, 43(2): 17-20. ZUO Tonglin, WANG Zihe, MO Zhenen. Relation model of structural parameters and air permeability of worsted fabrics by principal component analysis and regression[J]. Wool Textile Journal, 2015, 43(2): 17-20. [21]马寅佶, 吴清, 姚学锋, 等. 柔性囊体材料氦气渗透的细观机制[J]. 清华大学学报(自然科版), 2011, 51(5): 646-650. MA Yinjie, WU Qing, YAO Xuefeng, et al. Helium permeation through a lightweight flexible aerostat envelope material[J]. Journal of Tsinghua University (Science and Technology), 2011, 51(5): 646-650. [22]YAO X F, LEI Y M, XIONG C, et al. Mechanics analysis on helium leakage of flexible composites[J]. Mechanics of Advanced Materials and Structures, 2012, 19(8): 603-612. [23]YAO X F, LEI Y M, XIONG C, et al. Experimental study on damage-induced helium leakage in flexible composites[J]. Journal of Reinforced Plastics and Composites, 2010, 29(19): 2936-2945. [24]NOLL J. Determination of lift gas leakage rate for a stratospheric airship hull[C]∥11th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference, including the AIAA Balloon Systems Conference and 19th AIAA Lighter-Than. Virginia Beach, America: Southwest Research Institute, 2011: 6995-7012. [25]邢建国. 复杂大气环境条件下飞艇气囊气密性检测方法研究[D]. 大连: 大连理工大学, 2015. XING Jianguo. Study on air-tightness test method under complicated environment[D]. Dalian: Dalian University of Technology, 2015. [26]曾凡阳, 朱仁胜, 张月, 等. 基于等效差压法的浮空器泄漏检测方法研究[J]. 合肥工业大学学报(自然科学版), 2018, 41(4): 451-456. ZENG Fanyang, ZHU Rensheng, ZHNAG Yue, et al. Study on aerostat leakage detection method based on equivalent differential pressure method[J]. Journal of Hefei University of Technology (Natural Science), 2018, 41(4): 451-456. [27]朱仁胜. 复杂大气环境条件下气囊气密性检测方法研究[D]. 合肥: 合肥工业大学, 2016. ZHU Rensheng. Study on the method of floating ba-lloon air tightness detection conditions of complex atmospheric environment[D]. Hefei: Hefei University of Technology, 2016. [28]朱仁胜, 张月, 周隐. 恒温条件下浮空气囊泄漏仿真[J]. 机械设计与制造, 2018(2): 91-93. ZHU Rensheng, ZHANG Yue, ZHOU Yin. Simulation of leaking aerostat under the condition of constant temperature[J]. Machinery Design and Manufacture, 2018(2): 91-93. [29]DISDIER S, REY J M, PAILLERP, et al. Helium permeation in composite materials for cryogenic application[J]. Cryogenics, 1998, 38(1): 135-142. [30]廖启忠. 包装的渗透和泄漏[J]. 塑料包装, 2002, 12(1): 32-39. LIAO Qizhong. Packaging penetration and leakage[J]. Plastic Packaging, 2002, 12(1): 32-39. [31]中国国家标准化管理委员会. 光解性塑料户外暴露试验方法:GB/T 17603-2017[S]. 北京: 中国标准出版社, 2018. Standardization Administration of China. Standard practice for outdoor exposure testing of photodegradable plastics: GB/T 17603-2017[S]. Beijing: Standards Press of China, 2018. [32]American Society of Testing Materials. Standard practice for conditioning flexible barrier materials for flex durability. ASTM: F392/F392M-11[S]. US: ASTM, 2015. [33]国家技术监督局. 纺织品织物透气性的测定: GB/T 5453-1997[S]. 北京: 中国标准出版社, 1997. Technology Supervision Bureau. Textiles-determination of the permeability of fabrics to air: GB/T 5453-1997[S]. Beijing: Standards Press of China, 1997. [34]AGRESTI A, FRANKLIN C. Statistics: The art and science of learning from data[M]. 3rd ed. Pearson Prentice Hall: Upper Saddle River, 2009: 348-623. [35]MUNSON B R, YOUNG D F, OKIISHI T H. Fundamentals of fluid mechanics[M]. 3rd ed. New York: John Wiley & Sons, Inc., 2012: 125-489. [36]高晓艳, 张露, 潘志娟. 静电纺聚酰胺6纤维复合材料的孔隙特征及其过滤性能[J]. 纺织学报, 2010, 31(1): 5-10. GAO Xiaoyan, ZHANG Lu, PAN Zhijuan. Porous characteristics and filtration properties of electrospun PA6 fiber composite[J]. Journal of Textile Research, 2010, 31(1): 5-10.
Outlines

/