[1]王晓霖, 翟晓强, 王恬, 等. 高温供冷相变蓄冷材料的制备及蓄冷性能[J]. 上海交通大学学报, 2013, 47(8): 1275-1281.
WANG Xiaolin, ZHAI Xiaoqiang, WANG tian, et al. Preparation and performance of cold storage phase change material for high temperature cooling application[J]. Journal of Shanghai Jiao Tong University, 2013, 47(8): 1275-1281.
[2]CHEN Y F, WU X J, YUE S T, et al. Ethylene-propylene terpolymer-modified polyethylene-based phase change material with enhanced mechanical and thermal properties for building application[J]. Industrial and Engineering Chemistry Research, 2019, 58(1): 179-186.
[3]ZHANG D, CHEN M, LIU Q, et al. Preparation and thermal properties of molecular-bridged expanded graphite/polyethylene glycol composite phase change materials for building energy conservation[J]. Materials, 2018, 11(5): 818-833.
[4]YE R D, LIN W Z, YUAN K J, et al. Experimental and numerical investigations on the thermal performance of building plane containing CaCl2·6H2O/expanded graphite composite phase change material[J]. Applied Energy, 2017, 193: 325-335.
[5]ABOKERSH M H, OSMAN M, EL-BAZ O, et al. Review of the phase change material (PCM) usage for solar domestic water heating systems (SDWHS)[J]. International Journal of Energy Research, 2018, 42(2): 329-357.
[6]XU B, ZHOU J, NI Z J, et al. Synthesis of novel microencapsulated phase change materials with copper and copper oxide for solar energy storage and photo-thermal conversion[J]. Solar Energy Materials and Solar Cells, 2018, 179: 87-94.
[7]HEREZ A, RAMADAN M, KHALED M. Review on solar cooker systems: Economic and environmental study for different Lebanese scenarios[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 421-432.
[8]QIAN T T, ZHU S K, WANG H L, et al. Compa-rative study of single-walled carbon nanotube and graphene nanoplatelets for improving the thermal conductivity and solar-to-light conversion of PEG-infiltrated phase change material composites[J]. ACS Sustainable Chemistry and Engineering, 2019, 7(2): 2446-2458.
[9]HUANG X, LIN Y X, ALVA G, et al. Thermal properties and thermal conductivity enhancement of composite phase change materials using myristyl alcohol/metal foam for solar thermal storage[J]. Solar Energy Materials and Solar Cells, 2017, 170: 68-76.
[10]BERTRAND A, AGGOUNE R, MAREVHAL F O. In-building waste water heat recovery: An urban-scale method for the characterisation of water streams and the assessment of energy savings and costs[J]. Applied Energy, 2017, 192: 110-125.
[11]XIA M Z, YUAN Y P, ZHAO X D, et al. Cold storage condensation heat recovery system with a novel composite phase change material[J]. Applied Energy, 2016, 175: 259-268.
[12]JIA J, LEE W L. Experimental investigations on using phase change material for performance improvement of storage-enhanced heat recovery room air-conditioner[J]. Energy, 2015, 93: 1394-1403.
[13]SHAID A, WANG L J, ISLAM S, et al. Preparation of aerogel-eicosane microparticles for thermore-gulatory coating on textile[J]. Applied Thermal Engineering, 2016, 107: 602-611.
[14]KAZEMI Z, MORTAZAVI S M. A new method of application of hydrated salts on textiles to achieve thermoregulating properties[J]. Thermochimica Acta, 2014, 589(10): 56-62.
[15]LV Y F, SITU W F, YANG X Q, et al. A novel nanosilica-enhanced phase change material with anti-leakage and anti-volume-changes properties for ba-ttery thermal management[J]. Energy Conversion and Management, 2018, 163: 250-259.
[16]WU W X, WU W, WANG S F. Thermal management optimization of a prismatic battery with shape-stabilized phase change material[J]. International Journal of Heat and Mass Transfer, 2018, 121: 967-977.
[17]PIELICHOWSKA K, PIELICHOWSKI K. Phase change materials for thermal energy storage[J]. Progress in Materials Science, 2014, 65: 67-123.
[18]孟令然, 郭立江, 李晓禹, 等. 水合盐相变储能材料的研究进展[J]. 储能科学与技术, 2017, 6(4): 623-632.
MENG Lingran, GUO Lijiang, LI Xiaoyu, et al. Salt hydrate based phase change materials for thermal energy storage: A review[J]. Energy Storage Science and Technology, 2017, 6(4): 623-632.
[19]KENISARIN M, MAHKAMOV K. Salt hydrates as latent heat storage materials: Thermophysical properties and costs[J]. Solar Energy Materials and Solar Cells, 2016, 145: 255-286.
[20]OR E, DE GRACIA A, CASTELL A, et al. Review on phase change materials (PCMs) for cold thermal energy storage applications[J]. Applied Energy, 2012, 99: 513-533.
[21]吴东灵, 李廷贤, 何峰, 等. 三水醋酸钠相变储能复合材料改性制备及储/放热特性[J]. 化工学报, 2018, 69(7): 2860-2868.
WU Dongling, LI Tingxian, HE Feng, et al. Preparation and performance of modified sodium acetate trihydrate composite phase change material for thermal energy storage[J]. CIESC Journal, 2018, 69(7): 2860-2868.
[22]GU X B, QIN S, WU X, et al. Preparation and thermal characterization of sodium acetate trihydrate/expanded graphite composite phase change material[J]. Journal of Thermal Analysis and Calorimetry, 2016, 125(2): 831-838.
[23]KENISARIN M, MAHKAMOV K. Salt hydrates as latent heat storage materials: Thermophysical properties and costs[J]. Solar Energy Materials and Solar Cells, 2016, 145: 255-286.
[24]KREITH F, BOHN M, KIRKPATRICK A. Principles of heat transfer[J]. Journal of Solar Energy Engineering, 1997, 119(2): 187.
[25]YUAN K J, ZHOU Y, SUN W C, et al. A polymer-coated calcium chloride hexahydrate/expanded graphite composite phase change material with enhanced thermal reliability and good applicability[J]. Compo-sites Science and Technology, 2018, 156: 78-86.
[26]LING Z Y, LI S M, ZHANG Z G, et al. A shape-stabilized MgCl2·6H2O-Mg(NO3)2·6H2O/expanded graphite composite phase change material with high thermal conductivity and stability[J]. Journal of Applied Electrochemistry, 2018, 48(10): 1131-1138.
[27]HOU P M, MAO J F, CHEN F, et al. Preparation and thermal performance enhancement of low tempe-rature eutectic composite phase change materials based on Na2SO4·10H2O[J]. Materials, 2018, 11(11): 2230-2245.
[28]MAO J F, HOU P M, LIU R R, et al. Preparation and thermal properties of SAT-CMC-DSP/EG composite as phase change material[J]. Applied Thermal Engineering, 2017, 119: 585-592.
[29]FU W W, ZOU T, LIANG X H, et al. Thermal properties and thermal conductivity enhancement of composite phase change material using sodium acetate trihydrate-urea/expanded graphite for radiant floor heating system[J]. Applied Thermal Engineering, 2018, 138: 618-626.
[30]GAWRON K, SCHRDER J. Properties of some salt hydrates for latent heat storage[J]. International Journal of Energy Research, 2010, 1(4): 351-363.
[31]WANG Y, YU K X, PENG H, et al. Preparation and thermal properties of sodium acetate trihydrate as a novel phase change material for energy storage[J]. Energy, 2019, 167: 269-274.
[32]KONG W Q, DANNEMAND M, JOHANSEN J B, et al. Experimental investigations on heat content of supercooled sodium acetate trihydrate by a simple heat loss method[J]. Solar Energy, 2016, 139: 249-257.
[33]MAO J F, LI J T, LI J, et al. A selection and optimization experimental study of additives to thermal energy storage material sodium acetate trihydrate[C]∥2009 International Conference on Energy and Environment Technology, Guilin, Guangxi: IEEE, 2009: 14-17.
[34]SHI J N, GER M D, LIU Y M, et al. Improving the thermal conductivity and shape-stabilization of phase change materials using nanographite additives[J]. Carbon, 2013, 51: 365-372.
[35]ZHANG Y, ANIM-DANSO E, DHINOJWALA A. The effect of a solid surface on the segregation and melting of salt hydrates[J]. Journal of the American Chemical Society, 2014, 136(42): 14811-14820.