Thermal Characteristics Analysis of a Stratospheric Aerostat Based on Multi-Layer Node Model

Expand
  • College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China

Online published: 2020-07-31

Abstract

In this paper, a multi-layer node model, which is based on the two-node model, is proposed for thermal analysis of aerostats. The thermal performance simulation of a National Aeronautics and Space Administration (NASA) ultra long duration balloon suggests that the multi-layer node model can provide the distribution of different envelope parts and the development of helium temperature tendency with time. It is found that the diurnal temperature variation between top envelop and bottom envelop is smaller than that of stratospheric airships. It is also concluded that a low helium temperature difference can be reached at a high latitude position and a low helium temperature can be reached at a low altitude. The conclusions are valuable for superheat control of stratospheric aerostats.

Cite this article

DENG Xiaolong, MA Zhenyu, YANG Xixiang, ZHU Bingjie . Thermal Characteristics Analysis of a Stratospheric Aerostat Based on Multi-Layer Node Model[J]. Journal of Shanghai Jiaotong University, 2020 , 54(7) : 765 -770 . DOI: 10.16183/j.cnki.jsjtu.2019.013

References

[1]宣彬彬, 王晓亮, 陈吉安, 等. 临近空间飞艇新型推进方式[J]. 上海交通大学学报, 2016, 50(8): 1316-1322. XUAN Binbin, WANG Xiaoliang, CHEN Ji’an, et al. New propulsion method study of stratosphere airship[J]. Journal of Shanghai Jiao Tong University, 2016, 50(8): 1316-1322. [2]刘婷婷, 麻震宇, 杨希祥, 等. 太阳电池对平流层飞艇热特性的影响分析[J]. 宇航学报, 2018, 39(1): 35-42. LIU Tingting, MA Zhenyu, YANG Xixiang, et al. Influence of solar cells on thermal characteristics of stratospheric airship[J]. Journal of Astronautics, 2018, 39(1): 35-42. [3]ZHANG Y, LIU D X. Influences of initial launch conditions on flight performance of high altitude balloon ascending process[J]. Advances in Space Research, 2015, 56(4): 605-618. [4]SHI H, SONG B Y, YAO Q P, et al. Thermal performance of stratospheric airships during ascent and descent[J]. Journal of Thermophysics and Heat Transfer, 2009, 23(4): 816-821. [5]刘东旭, 杨永强, 吕明云, 等. 蒙皮热辐射特性对平流层浮空器氦气温度影响[J]. 北京航空航天大学学报, 2010, 36(7): 836-840. LIU Dongxu, YANG Yongqiang, L Mingyun, et al. Effect of envelop thermal radiative properties on the stratospheric super-pressure LTA vehicle helium temperature[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(7): 836-840. [6]STEFAN K. Thermal effects on a high altitude airship [DB/OL]. (2012-08-17) [2018-12-12]. https:∥arc.aiaa.org/doi/10.2514/6.1983-1984. [7]张贺磊, 方贤德, 戴秋敏. 临近空间飞艇内部自然对流换热计算研究[J]. 宇航学报, 2016, 37(7): 879-886. ZHANG Helei, FANG Xiande, DAI Qiumin. Investigation on internal natural convection of stratospheric airship[J]. Journal of Astronautics, 2016, 37(7): 879-886. [8]HARADA K, EGUCHI K, SANO M, et al. Experimental study of thermal modeling for stratospheric platform airship [DB/OL]. (2012-06-21) [2018-12-12]. https:∥arc.aiaa.org/doi/10.2514/6.2003-6833. [9]DAI Q M, FANG X D, LI X J, et al. Performance simulation of high altitude scientific balloons[J]. Advances in Space Research, 2012, 49(6): 1045-1052. [10]徐向华, 程雪涛, 梁新刚. 平流层浮空器的热数值分析[J]. 清华大学学报(自然科学版), 2009, 49(11): 1848-1851. XU Xianghua, CHENG Xuetao, LIANG Xingang. Thermal analysis of a stratospheric airship[J]. Journal of Tsinghua University (Science and Technology), 2009, 49(11): 1848-1851. [11]WU J T, FANG X D, WANG Z G, et al. Thermal modeling of stratospheric airships[J]. Progress in Aerospace Sciences, 2015, 75: 26-37.
Outlines

/