Foundation Selection and Seismic Performance of Steam Turbine

Expand
  • 1. School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013, China; 2. Shanghai Turbine Plant, Shanghai Electric Power Generation Equipment Co., Ltd., Shanghai 200240, China; 3. School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Online published: 2020-07-31

Abstract

To determine the foundation form and seismic performance of a nuclear steam turbine, this paper established a three-dimensional finite element model of integral structure of the turbine by using LS-DYNA finite element program and comprehensively analyzed the foundation selection problem and the overall seismic resistance of the turbine. The results show that in the rigid foundation and spring foundation of current nuclear power equipment, the spring foundation is more suitable to be used as the foundation of the nuclear steam turbine for its better seismic performance. When the spring foundation is chosen as the foundation of the nuclear steam turbine, the entire structure can meet the seismic requirements at frequently occurred earthquake of 8 degree seismic precautionary intensity. However, at rarely occurred earthquake of 8 degree seismic precautionary intensity, the seismic performance of the structure should be improved because the deformation of some structures of the steam turbine is too large and the internal force does not meet the requirements of its own strength and seismic requirements.

Cite this article

WANG Wei, LU Sikui, YANG Chengzhong, XU Sihua, CHEN Jinjian . Foundation Selection and Seismic Performance of Steam Turbine[J]. Journal of Shanghai Jiaotong University, 2020 , 54(7) : 736 -744 . DOI: 10.16183/j.cnki.jsjtu.2018.302

References

[1]李炳益, 孙波, 刘丽华, 等. 高烈度地震区汽轮发电机基础结构选型[J].武汉大学学报(工学版), 2013, 46(Sup.1): 210-215. LI Bingyi, SUN Bo, LIU Lihua, et al. Selection of turbine generator foundation structure in high-intensity seismic area[J]. Engineering Journal of Wuhan University, 2013, 46(Sup.1): 210-215. [2]PODGORNYI A N, SEMIZHONOV E M, KRANTSFEL’D Y L. Fundation designs for low-speed turbine units at nuclear power plants[J]. Soil Mechanics and Foundation Engineering, 1985, 22(4): 119-124. [3]IRRETIER H. Mathematical foundations of experimental modal analysis in rotor dynamics[J]. Mechanical Systems and Signal Processing, 1999, 13(2): 183-191. [4]白国良, 刘煦, 刘宝泉, 等. 大型汽轮机组混合框架式基础结构模型试验模态分析[J].西安建筑科技大学学报(自然科学版), 2007, 39(3): 297-302. BAI Guoliang, LIU Xu, LIU Baoquan, et al. Expe-rimental modal analysis of hybrid frame foundation model for large steam turbines[J]. Journal of Xi’an University of Architecture & Technology (Natural Science Edition), 2007, 39(3): 297-302. [5]董莉, 张博一. 弹簧隔振汽轮发电机基础动力特性试验[J]. 低温建筑技术, 2014, 36(3): 43-46. DONG Li, ZHANG Boyi. Dynamic characteristics test of spring vibration isolation turbo generator foundation[J]. Low Temperature Architecture Technology, 2014, 36(3): 43-46. [6]张博一, 李秋稷, 王伟, 等. 汽轮发电机组弹簧隔振基础模型动力特性试验[J]. 哈尔滨工业大学学报, 2015, 47(4): 37-43. ZHANG Boyi, LI Qiuji, WANG Wei, et al. Dynamic characteristics test of spring vibration isolation foundation model of turbine generator set[J]. Journal of Harbin Institute of Technology, 2015, 47(4): 37-43. [7]SHU L W, CHEN L G, JIN J S, et al. Functional reliability simulation for a power-station’s steam-turbine[J]. Applied Energy, 2004, 80(1): 61-66. [8]MOELLING D, JACKSON P, MALLOY J. Protecting steam cycle components during low-load operation of combined cycle gas turbine plants[J]. Power, 2015, 159(3): 42-45. [9]宋远齐, 周向群, 付裕. 汽轮发电机弹簧基础隔振效率计算方法及测试比较[J]. 武汉大学学报(工学版), 2013, 46(Sup.1): 220-224. SONG Yuanqi, ZHOU Xiangqun, FU Yu. Calculation method and test comparison of vibration isolation efficiency of steam turbine generator spring[J]. Engineering Journal of Wuhan University, 2013, 46(Sup.1): 220-224. [10]ROY N, SAHU R B. Site specific ground motion simulation and seismic response analysis for microzonation of Kolkata[J]. Geomechanics and Engineering, 2012, 4(1): 1-18. [11]CILINGIR U, MADABHUSHI S P G. A model study on the effects of input motion on the seismic behavior of tunnels[J]. Soil Dynamics and Earthquake Engineering, 2011, 31(3): 452-462. [12]IRRETIER H. History and development of frequency domain methods in experimental modal analysis[J]. Journal De Physique IV, 2002, 12(11): 91-100. [13]王辅方, 刘映晶, 向国威, 等. 核电低压缸及凝汽器的地震响应分析[J]. 上海交通大学学报, 2012, 46(1): 114-118. WANG Fufang, LIU Yingjing, XIANG Guowei, et al. Seismic response analysis of nuclear low pressure cylinder and condenser[J]. Journal of Shanghai Jiao Tong University, 2012, 46(1): 114-118. [14]李汪繁, 王秀瑾, 蒋俊, 等. 汽轮发电机组弹簧隔振模型基础模态分析研究[J].热力透平, 2015, 44(1): 58-61. LI Wangfan, WANG Xiujin, JIANG Jun, et al. Research on basic modal analysis of spring vibration isolation model of turbine generator sets[J]. Thermal Turbine, 2015, 44(1): 58-61. [15]胡志强, 徐嗣华. 核电汽轮机抗震分析方法的发展和应用[J]. 热力透平, 2015, 44(4): 290-295. HU Zhiqiang, XU Sihua. Development and application of seismic analysis methods for nuclear steam turbines[J]. Thermal Turbine, 2015, 44(4): 290-295. [16]余紫群, 杨晓辉. 田湾二期汽轮发电机组弹性基础选择[J].汽轮机技术, 2014, 56(1): 18-21. YU Ziqun, YANG Xiaohui. Elastic foundation selection of Tianwan Phase II turbine generator set[J]. Turbine Technology, 2014, 56(1): 18-21. [17]JONES D R, SCHONLAU M, WELCH W J. Efficient global optimization of expensive black-box functions[J]. Journal of Global Optimization, 1998, 13(4): 455-492. [18]KIRSCH U. Synthesis of structural geometry using approximation concepts[J]. Computers and Structures, 1982, 15(3): 358-365. [19]中华人民共和国住房和城乡建设部.建筑抗震设计规范:GB 50011-2010[S].北京:中国建筑工业出版社, 2016. MOHURD. Code for seismic design ofbuildings:GB 50011-2010[S]. Beijing: China Architecture & Building Press, 2016.
Outlines

/