Design and Realization of a Versatile Simulation Platform for Telecontrol Multi-Rotor Unmanned Aerial Vehicle with a Robotic Arm

Expand
  • School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Online published: 2020-07-03

Abstract

In order to improve the stability of aerial grasping, it is necessary to design and validate the telecontrol algorithm of unmanned aerial vehicle (UAV). After establishing the whole dynamic model of an aerial telecontrol manipulator, based on the secondary development of virtual robot experimentation platform (V-REP), the precise description and the visual simulation of the robot system are realized. Moreover, a stabilization-grasping algorithm for UAV based on centroid acquisition and inverse kinematics is proposed, and a versatile simulation platform is developed. The results show that the simulation experimental platform provides a new solution for UAV telecontrol grasping.

Cite this article

MA Zhonghang, ZHANG Zhinan . Design and Realization of a Versatile Simulation Platform for Telecontrol Multi-Rotor Unmanned Aerial Vehicle with a Robotic Arm[J]. Journal of Shanghai Jiaotong University, 2020 , 54(6) : 636 -642 . DOI: 10.16183/j.cnki.jsjtu.2018.374

References

[1]KIM S J, LEE D Y, JUNG G P, et al. An origami-inspired, self-locking robotic arm that can be folded flat[J]. Science Robotics, 2018, 3(16): eaar2915. [2]SPURN V, BA T, SASKA M, et al. Cooperative autonomous search, grasping, and delivering in a treasure hunt scenario by a team of unmanned aerial vehicles[J]. Journal of Field Robotics, 2019, 36(1): 125-148. [3]KLAUSEN K, FOSSEN T I, JOHANSEN T A. Nonlinear control with swing damping of a multirotor UAV with suspended load[J]. Journal of Intelligent & Robotic Systems, 2017, 88(2/3/4): 379-394. [4]ODELGA M, STEGAGNO P, BLTHOFF H H. Obstacle detection, tracking and avoidance for a teleoperated UAV[C]∥International Conference on Robotics and Automation (ICRA). Stockholm, Swenden: IEEE, 2016: 2984-2990. [5]刘晓东, 钟麦英, 柳海. 基于EKF的无人机飞行控制系统故障检测[J]. 上海交通大学学报, 2015, 49(6): 884-888. LIU Xiaodong, ZHONG Maiying, LIU Hai. EKF-based fault detection of unmanned aerial vehicle flight control system[J]. Journal of Shanghai Jiao Tong University, 2015, 49(6): 884-888. [6]袁天明. 基于神经网络的机械手轨迹跟踪控制方法研究[D]. 大连: 大连理工大学, 2015. YUAN Tianming. Research of trajectory tracking control method for manipulator based on neural network[D]. Dalian: Dalian University of Technology, 2015. [7]赵强, 吴洪涛, 朱剑英. 多节臂举升机器人重心推算的研究[J]. 机器人, 2006, 28(1): 50-53. ZHAO Qiang, WU Hongtao, ZHU Jianying. Study on the recursive algorithms of mass center for the multi-joint arm boom lift robot[J]. Robot, 2006, 28(1): 50-53. [8]JIAO R, CHOU W, DING R, et al. Adaptive robust control of quadrotor with a 2-degree-of-freedom robotic arm[J]. Advances in Mechanical Engineering, 2018, 10(8): 1-11. [9]KIM S, CHOI S, KIM H J. Aerial manipulation using a quadrotor with a two dof robotic arm[C]∥2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Tokyo, Japan: IEEE, 2013: 4990-4995. [10]许江阴, 赵宏强, 邓宇. 四旋翼无人机可视化轨迹跟踪仿真系统[J]. 计算机测量与控制, 2017, 25(3): 130-133. XU Jiangyin, ZHAO Hongqiang, DENG Yu. Virtual trajectory tracking simulation system for quadrotor UAV[J]. Computer Measurement & Control, 2017, 25(3): 130-133. [11]李伟荣, 方舟, 李诚龙. 带悬挂负载的八旋翼无人机建模与控制[J]. 计算机应用, 2015, 35(Sup.2): 138-142. LI Weirong, FANG Zhou, LI Chenglong. Modeling and control of unmanned octocopter with slung load[J]. Journal of Computer Applications, 2015, 35(Sup.2): 138-142. [12]李伟荣. 带悬挂吊舱的八旋翼特种无人机动力学建模与控制[D]. 杭州: 浙江大学, 2015. LI Weirong. Modeling and control of a special unmanned octocopter with a slung load[D]. Hangzhou: Zhejiang University, 2015. [13]FREESE M, SINGH S, OZAKI F, et al. Virtual robot experimentation platform V-REP: A versatile 3D robot simulator[C]∥Simulation, Modeling, and Programming for Autonomous Robots. Darmstadt, Germany: Springer, 2010: 51-62. [14]SURBER J, TEIXEIRA L, CHLI M. Robust visual-inertial localization with weak GPS priors for repetitive UAV flights[C]∥International Conference on Robotics and Automation (ICRA). Singapore: IEEE, 2017: 6300-6306.
Outlines

/