Multiuser Differential Chaos Shift Keying Scheme Based on Time Reverse

Expand
  • Chongqing Key Laboratory of Signal and Information Processing, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

Online published: 2020-04-30

Abstract

Aiming at the problem of poor bit error performance and low transmission rate of differential chaos shift keying (DCSK), the time reverse multiuser-DCSK (TRM-DCSK) communication system is proposed. The system uses different time delays to distinguish different information time slots. In each information time slot, two-bit information signals can be transmitted by time inversion, and then the information signals of the two bits are superimposed and transmitted together as an information bearing signal. The use of time reversal can enhance the autocorrelation of chaotic signals and improve the error performance of the system. The bit error rate formula of TRM-DCSK system in additive white gaussian noise (AWGN) and Rayleigh fading channel is derived and simulated. The simulation results show that the TRM-DCSK system is significantly improved compared with the traditional multiuser DCSK system when transmitting the same number of users.

Cite this article

ZHANG Gang, ZHAO Changchang, ZHANG Tianqi . Multiuser Differential Chaos Shift Keying Scheme Based on Time Reverse[J]. Journal of Shanghai Jiaotong University, 2020 , 54(4) : 352 -358 . DOI: 10.16183/j.cnki.jsjtu.2020.04.003

References

[1]KENNEDY M P, KOLUMBAN G, KIS G. Performance evaluation of FM-DCSK modulation in multipath environments[J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2000, 47(12): 1702-1711. [2]KADDOUM G, TRAN H V, KONG L, et al. Design of simultaneous wireless information and power transfer scheme for short reference DCSK communication systems[J]. IEEE Transactions on Communications, 2017, 65(1): 431-433. [3]段俊毅, 蒋国平, 杨华. 无信号内干扰的相关延迟键控混沌通信方案[J]. 电子与信息学报, 2016, 38(3): 681-687. DUAN Junyi, JIANG Guoping, YANG Hua. Correlation delay shift keying chaotic communication scheme with no intrasignal interference[J]. Journal of Electronics and Information Technology, 2016, 38(3): 681-687. [4]KADDOUM G, SOUJERI E, NIJSURE Y. Design of a short reference noncoherent chaos-based communication systems[J]. IEEE Transactions on Communications, 2016, 64(2): 680-689. [5]KADDOUM G. Design and performance analysis of a multiuser OFDM based differential chaos shift keying communication system[J]. IEEE Transactions on Communications, 2016, 64(1): 249-260. [6]蒋国平, 杨华, 段俊毅. 混沌数字调制技术研究进展[J]. 南京邮电大学学报(自然科学版), 2016, 36(1): 1-7. JIANG Guoping, YANG Hua, DUAN Junyi. Research progress on chaotic digital modulation techno-logies[J]. Journal of Nanjing University of Posts and Telecommunications (Natural Science Edition), 2016, 36(1): 1-7. [7]KADDOUM G, SOUJERI E. NR-DCSK: A noise reduction differential chaos shift keying system[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2016, 63(7): 648-652. [8]CHEN C C, YAO K. Stochastic-calculus-based numerical evaluation and performance analysis of chaotic communication systems[J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2000, 47(12): 1663-1672. [9]DAWA M, KADDOUM G, SATTAR Z. A generalized lower bound on the bit error rate of DCSK systems over multi-path Rayleigh fading channels[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2018, 65(3): 321-325. [10]SUSHCHIK M, TSIMRING L S, VOLKOVSKII A R, et al. Performance analysis of correlation-based communication schemes utilizing chaos[J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2000, 47(12): 1684-1691. [11]YANG H, JIANG G P. High-efficiency differential-chaos-shift-keying scheme for chaos-based noncohe-rent communication[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2012, 59(5): 312-316. [12]YANG H, JIANG G P. Reference-modulated DCSK: A novel chaotic communication scheme[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2013, 60(4): 232-236. [13]KADDOUM G, SOUJERI E, ARCILA C, et al. I-DCSK: an improved noncoherent communication system architecture[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2015, 62(9): 901-905. [14]LAU F C, YIP M M, TEE C K, et al. A multiple-access technique for differential chaos shift keying[J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2002, 49(1): 96-104. [15]张刚, 孟维, 张天骐. 一种改进型多用户正交差分混沌键控[J]. 电子技术应用, 2015, 41(12): 76-78. ZHANG Gang, MENG Wei, ZHANG Tianqi. An improved multiple access orthogonal differential chaos shift keying[J]. Application of Electronic Technique, 2015, 41(12): 76-78. [16]MANDAL S, BANERJEE S. Analysis and CMOS implementation of a chaos-based communication system[J]. IEEE Transactions on Circuits Systems I: Regular Papers, 2004, 51(9): 1708-1722. [17]CHERNOV N I. Limit theorems and Markov approximations for chaotic dynamical systems[J]. Probability Theory and Related Fields, 1995, 101(3): 321-362.
Outlines

/