Curved-Surface Constant Force Tracking Based on Fuzzy Iterative Method

Expand
  • School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China

Online published: 2020-04-30

Abstract

Aiming at the problem that it is difficult to obtain a constant tracking force when the robot end-effector tracks the contour of a curved-surface workpiece, the contact force between robot end-effector and the curved-surface workpiece is analyzed, the mapping relationship between the normal force of the curved surface and the known sensor coordinate system is established, and a fuzzy iterative algorithm is proposed. Iterative algorithm does not need to get the advantages of the system internal transfer function, which simplifies the modeling design. Meanwhile,the fuzzy iterative algorithm compensates the robot trajectory based on the previous experimental force error and the amount of error change, which accelerates the convergence speed. The bounded convergence of fuzzy iterative algorithm is proved theoretically. The experimental results show that the fluctuation range of contact force is within ±3 N, which verifies the feasibility of this algorithm. Compared with the traditional proportional-derivative (PD) algorithm, the standard deviation of contact force of the fuzzy iterative algorithm is reduced by 42%. Compared with the iterative algorithm without fuzzy compensation, the iteration cycle is reduced at least once in the selected time periods.

Cite this article

ZHANG Tie, XIAO Meng, ZOU Yanbiao, XIAO Jiadong . Curved-Surface Constant Force Tracking Based on Fuzzy Iterative Method[J]. Journal of Shanghai Jiaotong University, 2020 , 54(4) : 344 -351 . DOI: 10.16183/j.cnki.jsjtu.2020.04.002

References

[1]WANG G, WANG Y, ZHANG L. Development and polishing process of a mobile robot finishing large mold surface[J]. Machining Science and Technology, 2014, 18(4): 603-625. [2]杨林, 赵吉宾, 李论, 等. 有机玻璃研磨抛光机器人力控制研究[J]. 机械设计与制造, 2015, 290(4): 105-107. YANG Lin, ZHAO Jibin, LI Lun, et al. A study of grinding and polishing robot force control for plexiglass[J]. Machinery Design and Manufacture, 2015, 290(4): 105-107. [3]韩瑜, 许燕玲, 花磊, 等. 六轴关节机器人系统结构及其关键技术[J]. 上海交通大学学报, 2016, 50(10): 1521-1525. HAN Yu, XU Yanling, HUA Lei, et al. Development and key technology of six axis joint robots[J]. Journal of Shanghai Jiao Tong University, 2016, 50(10): 1521-1525. [4]陈玉山. 6R型工业机器人关节刚度辨识与实验研究[D]. 武汉: 华中科技大学, 2011. CHEN Yushan. Joint stiffness identification of 6R industrial robot and experimental verification[D]. Wuhan: Huazhong University of Science and Technology, 2011. [5]吴得祖. 基于六维力传感器的机器人曲面跟踪力控制与实验研究[D]. 秦皇岛: 燕山大学, 2013. WU Dezu. Force control of the robot surface tracking and its experiment research based on six-axis force sensor[D]. Qinhuangdao: Yanshan University, 2013. [6]ALEXANDER W, JOZEF S. Force controlled contour following on unknown objects with an industrial robot[C]//2013 IEEE International Symposium on Robotic and Sensors Environments (ROSE). Washington: IEEE, 2013: 208-213. [7]YE B, SONG B, LI Z, et al. A study of force and position tracking control for robot contact with an arbitrarily inclined plane[J]. International Journal of Advanced Robotic Systems, 2013, 10(1): 69-75. [8]SEUL J, HSIA T C. Robust neural force control scheme under uncertainties in robot dynamics and unknown environment[J]. IEEE Transactions on Industrial Electronics, 2002, 47(2): 403-412. [9]WANG W, LEE C. Fuzzy neural network-based adaptive impedance force control design of robot manipulator under unknown environment[C]//IEEE International Conference on Fuzzy Systems. Beijing: IEEE, 2014: 1442-1448. [10]王磊, 柳洪义. 面向未知环境基于智能预测的模糊控制器研究. 信息与控制[J]. 信息与控制, 2006, 35(1): 38-42. WANG Lei, LIU Hongyi. Fuzzy controller based on intelligent prediction in unknown environment[J]. Information and Control, 2006, 35(1): 38-42. [11]丁希仑, 周乐来, 周军. 机器人的空间位姿误差分析方法[J]. 北京航空航天大学学报, 2009, 35(2): 241-245. DING Xilun, ZHOU Lelai, ZHOU Jun. Pose error analysis of robot in three dimension[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(2): 241-245. [12]李仁俊, 韩正之. 迭代学习控制综述[J]. 控制与决策, 2005, 20(9): 961-966. LI Renjun, HANG Zhengzhi. Survey of iterative learning control[J]. Control and Decision, 2005, 20(9): 961-966. [13]张航, 罗大庸, 黄浩江, 等. 机器人模糊迭代学习控制及其仿真研究[J]. 自动化技术与应用, 2002, 38(2): 6-8. ZHANG Hang, LUO Dayong, HUANG Haojiang, et al. Fuzzy iterative learning control of robot and its simulation[J]. Techniques of Automation and Applications, 2002, 38(2): 6-8. [14]刘金琨. 机器人控制系统的设计与MATLAB仿真[M]. 北京: 清华大学出版社, 2008: 262. LIU Jinkun. Robot control system desiging and MATLAB simulation[M]. Beijing: Tsinghua University Press, 2008: 262. [15]CALANCA A, MURADORE R, FIORINI P. A review of algorithms for compliant control of stiff and fixed-compliance robots[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(2): 613-624. [16]UCHIYAMA M. Formation of high-speed motion pattern of a mechanical arm by trial[J]. Transactions of the Society of Instrumentation and Control Engineers, 1979, 14(6): 706-712. [17]刘金琨. 智能控制技术[M]. 3版. 北京: 北京航空航天大学出版社, 2014. LIU Jinkun. Intelligent control[M]. 3rd ed. Beijing: Beijing University of Aeronautics and Astronautics Press, 2014. [18]胡广. 用于磨削加工的机器人力控制方法研究[D]. 广州: 华南理工大学, 2016. HU Guang. Research on robot force control method used on grinding process[D]. Guangzhou: South China University of Technology, 2016.
Outlines

/