Adaptive Terminal Sliding Mode Control of a Howitzer Shell Transfer Arm with Friction Compensation

Expand
  • School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

Online published: 2020-03-06

Abstract

To deal with the fast position control problem of a howitzer shell transfer arm with load change and nonlinear friction disturbance, a nonsingular fast terminal sliding mode control strategy is designed combined with adaptive control. The dynamical equations of shell transfer arm with load change and nonlinear friction are established. To avoid singular problem of the control law and improve the convergence rate of reaching the sliding surface, a new nonsingular fast terminal sliding mode control strategy is used to design the control law of the howitzer shell transfer arm. An adaptive law is presented to estimate the unknown upper bound of the uncertain disturbance which is difficult to obtain. The state of the closed-loop system is finite time convergence based on the Lyapunov theory. In order to realize the friction compensation control, a genetic algorithm is used to identify the Stribeck model parameters of the system. The experiment results of shell transfer arm under three different load conditions show that the controller designed in this paper can position accurately, and it has a good robustness against load change and nonlinear friction. The correctness and effectiveness of the proposed control strategy are proved by experimental results.

Cite this article

YAO Laipeng, HOU Baolin, LIU Xi . Adaptive Terminal Sliding Mode Control of a Howitzer Shell Transfer Arm with Friction Compensation[J]. Journal of Shanghai Jiaotong University, 2020 , 54(2) : 144 -151 . DOI: 10.16183/j.cnki.jsjtu.2020.02.005

References

[1]侯保林, 樵军谋, 刘琮敏. 火炮自动装填[M]. 北京: 兵器工业出版社, 2010: 175-178. HOU Baolin, QIAO Junmou, LIU Congmin. Ammunition automatic loading system of howitzer[M]. Beijing: Publishing House of Ordnance Industry, 2010: 175-178. [2]岳才成, 钱林方, 徐亚栋, 等. 基于指数趋近律链传动弹仓自适应模糊滑模控制[J]. 上海交通大学学报, 2018, 52(6): 750-756. YUE Caicheng, QIAN Linfang, XU Yadong, et al. Adaptive fuzzy sliding mode control for a chain dri-ving shell magazine based on an exponential reaching law[J]. Journal of Shanghai Jiao Tong University, 2018, 52(6): 750-756. [3]褚振忠, 朱大奇, 张铭钧. 基于终端滑模观测器的水下机器人推进器故障重构[J]. 上海交通大学学报, 2015, 49(6): 837-841. CHU Zhenzhong, ZHU Daqi, ZHANG Mingjun. Terminal sliding mode observer based fault reconstruction for underwater vehicle thruster[J]. Journal of Shanghai Jiao Tong University, 2015, 49(6): 837-841. [4]龚征华, 田震, 熊文, 等. 全局滑模控制方法在喷水推进操舵系统中的应用[J]. 上海交通大学学报, 2017, 51(6): 693-697. GONG Zhenghua, TIAN Zhen, XIONG Wen, et al. Global sliding mode control approach for the steering system of the water-jet propulsion device[J]. Journal of Shanghai Jiao Tong University, 2017, 51(6): 693-697. [5]TANG Y. Terminal sliding mode control for rigid robots [J]. Automatica, 1998, 34(1): 51-56. [6]YONG F, YU X, MAN Z. Non-singular terminal sliding mode control of rigid manipulators [J]. Automatica, 2002, 38(12): 2159-2167. [7]张晓光, 赵克, 孙力. 永磁同步电动机混合非奇异终端滑模变结构控制[J]. 中国电机工程学报, 2011, 31(27): 116-122. ZHANG Xiaoguang, ZHAO Ke, SUN Li. Hybrid nonsingular terminal sliding mode control for permanent magnet synchronous motor drive system [J]. Proceedings of the CSEE, 2011, 31(27): 116-122. [8]赵抢抢, 侯保林. 火炮弹药协调器区间不确定参数辨识[J]. 兵工学报, 2017, 38(1): 35-42. ZHAO Qiangqiang, HOU Baolin. Identification of interval uncertainty parameters of a howitzer shell transfer arm [J]. Acta Armamentarii, 2017, 38(1): 35-42. [9]SI Y J, SONG S M. Adaptive reaching law based three-dimensional finite-time guidance law against maneuvering targets with input saturation [J]. Aerospace Science & Technology, 2017, 70: 198-210. [10]王肖, 郭杰, 唐胜景, 等. 吸气式高超声速飞行器鲁棒非奇异Terminal滑模反步控制[J]. 航空学报, 2017, 38(3): 189-201. WANG Xiao, GUO Jie, TANG Shengjing, et al. Robust nonsingular Terminal sliding mode backste-pping control for air-breathing hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3): 189-201. [11]VAN M, GE S S, REN H. Finite time fault tolerant control for robot manipulators using time delay estimation and continuous nonsingular fast terminal sli-ding mode control [J]. IEEE Transactions on Cybernetics, 2017, 47(7): 1681-1693. [12]YANG L, YANG J. Nonsingular fast terminal sli-ding-mode control for nonlinear dynamical systems [J]. International Journal of Robust & Nonlinear Control, 2011, 21(16): 1865-1879. [13]王瑞娟, 梅志千, 李向国, 等. 机电伺服系统非线性摩擦自适应补偿的研究[J]. 中国电机工程学报, 2012, 32(36): 123-129. WANG Ruijuan, MEI Zhiqian, LI Xiangguo, et al. Research on adaptive nonlinear friction compensation of mechatronic servo systems [J]. Proceedings of the CSEE, 2012, 32(36): 123-129. [14]MARQUES F, FLORES P, CLARO J C P, et al. A survey and comparison of several friction force models for dynamic analysis of multibody mechanical systems [J]. Nonlinear Dynamics, 2016, 86(3): 1-37. [15]ZHOU X, ZHAO B, LIU W, et al. A compound scheme on parameters identification and adaptive compensation of nonlinear friction disturbance for the aerial inertially stabilized platform [J]. ISA Transactions, 2017, 67: 293-305. [16]刘强, 扈宏杰, 刘金琨, 等. 基于遗传算法的伺服系统摩擦参数辨识研究 [J]. 系统工程与电子技术, 2003, 25(1): 77-79. LIU Qiang, HU Hongjie, LIU Jinkun, et al. Research on the parameter identification of friction model for servo systems based on genetic algorithms [J]. Systems Engineering and Electronics, 2003, 25(1): 77-79.
Outlines

/