Experimental and Numerical Simulation Study on Flow-Induced Vibration Characteristics of Flat Strip

Expand
  • School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Online published: 2020-01-16

Abstract

Flow-induced vibration will happen when the fuel assemblies in a reactor are flushed by the coolant at a high speed. And vibration of fuel rod cladding and spacer grid strips will lead to wear of fuel assemblies, which affects the operation security of nuclear power plant. In order to study the characteristics and the methods of flow-induced vibration of spacer grid strips, a flat stainless strip without structure is employed to carry on the flow-induced vibration experiments. A laser Doppler vibrometer is used to measure the vibration characteristics of the strip under waterflow conditions. The test results show that the “lock-in” phenomenon occurs when the frequency of vortex-induced vibration is near to the natural frequency. Vortex-induced vibration frequency is linear with the flow velocity within a certain flow rate range. Furthermore, the natural frequency of the flat strip in water is well predicted by applying wet modal simulation.

Cite this article

ZHANG Botao,ZHU Yechen,MEI Yong,GONG Shengjie . Experimental and Numerical Simulation Study on Flow-Induced Vibration Characteristics of Flat Strip[J]. Journal of Shanghai Jiaotong University, 2020 , 54(1) : 100 -105 . DOI: 10.16183/j.cnki.jsjtu.2020.01.013

References

[1]IAEA. Review of fuel failures in water cooled reactors[M]. Vienna, Austria: International Atomic Energy Agency, 2010: 60-67. [2]张晓玲, 李天勇, 马建中, 等. 燃料组件流致振动试验研究 [J]. 核动力工程, 2016, 37(Sup.2): 44-46. ZHANG Xiaoling, LI Tianyong, MA Jianzhong, et al. Test studies of flow induced vibration for fuel assembly[J]. Nuclear Power Engineering, 2016, 37(Sup.2): 44-46. [3]LIU H D, CHEN D Q, HU L, et al. Numerical investigations on flow-induced vibration of fuel rods with spacer grids subjected to turbulent flow[J]. Nuclear Engineering and Design, 2017, 325: 68-77. [4]卢川, 卢庆, 张虹, 等. 基于大涡模拟(LES)的格架外条带区域压力和速度瞬态特性研究[J]. 核动力工程, 2013, 34(4): 38-42. LU Chuan, LU Qing, ZHANG Hong, et al. LES calculations for pressure and velocity transient characteristics on spacer grids outer ribbons[J]. Nuclear Power Engineering, 2013, 34(4): 38-42. [5]WILLIAMSON C H K, ROSHKO A. Vortex formation in the wake of an oscillating cylinder[J]. Journal of Fluids and Structures, 1988, 2(4): 355-381. [6]KHALAK A, WILLIAMSON C H K. Motions, forces and mode transitions in vortex-induced vibrations at low mass-damping[J]. Journal of Fluids and Structures, 1999, 13(7/8): 813-851. [7]GOVARDHAN R, WILLIAMSON C H K. Modes of vortex formation and frequency response for a freely vibrating cylinder[J]. Journal of Fluid Mechanics, 2000, 420: 85-130. [8]SUMER B M, FREDSOE J. Hydrodynamics around cylindrical structures[M]. Singapore: World Scientific Publishing Co Pte Ltd, 1997: 353-376. [9]胡德江. 不同截面形状柱体流致振动特性实验研究[D]. 重庆: 重庆大学, 2016. HU Dejiang. Experimental study on the characteristics of flow-induced motion of cylinders with different cross-section[D]. Chongqing: Chongqing University, 2016. [10]徐枫, 欧进萍, 肖仪清. 不同截面形状柱体流致振动的CFD数值模拟[J]. 工程力学, 2009, 26(4): 7-15. XU Feng, OU Jinping, XIAO Yiqing. CFD numerical simulation of flow-induced vibration with different cross-section cylinder[J]. Engineering Mechanics, 2009, 26(4): 7-15. [11]杨安良, 龚圣捷, 顾汉洋. 流致振动激光多普勒测振方法研究[J]. 测试技术学报, 2015, 29(2): 93-99. YANG Anliang, GONG Shengjie, GU Hanyang. An investigation of laser Doppler vibrometer measurement technique on flow-induced vibration[J]. Journal of Test and Measurement Technology, 2015, 29(2): 93-99. [12]刘家正, 干富军, 龚圣捷, 等. 激光测振技术的可靠性试验研究[J]. 中国核电, 2013, 6(4): 296-300. LIU Jiazheng, GAN Fujun, GONG Shengjie, et al. Reliability verification of the laser vibrometer technique[J]. China Nuclear Power, 2013, 6(4): 296-300. [13]姜峰, 郑运虎, 梁瑞, 等. 海洋立管湿模态振动分析[J]. 西南石油大学学报(自然科学版), 2015, 37(5): 159-166. JIANG Feng, ZHENG Yunhu, LIANG Rui, et al. An analysis of the wet modal vibration of marine riser[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2015, 37(5): 159-166. [14]田红莉, 刘志峰, 张乃龙, 等. 箱体结构的声固耦合有限元分析[J]. 机械设计与制造, 2007, 7: 24-26. TIAN Hongli, LIU Zhifeng, ZHANG Nailong, et al. Solid box on the acoustic coupling finite element analysis[J]. Machinery Design & Manufacture, 2007, 7: 24-26. [15]杨鸣, 王辉, 段玉康, 等. 基于声-固耦合算法的储液容器湿模态分析[J]. 四川兵工学报, 2015, 5(36): 152-154. YANG Ming, WANG Hui, DUAN Yukang, et al. Wet mode analysis of liquid storage containers based on acoustic-structure coupling method[J]. Journal of Sichuan Ordnance, 2015, 5(36): 152-154.
Outlines

/