Development and Validation of a Time-Domain Coupling Simulation Code for Floating Offshore Wind Turbines

Expand
  • 1. State Key Laboratory of Ocean Engineering; Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai Jiao Tong University, Shanghai 200240, China; 2. School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; 3. China Energy Engineering Group Guangdong Electric Power Design Institute Co., Ltd., Guangzhou 510663, China

Online published: 2020-01-06

Abstract

The paper presents the theories of an in-house time-domain simulation code for floating offshore wind turbines. The unsteady blade-element-momentum method with correction methods is applied to calculate aerodynamic loads. Combination of the potential-flow theory and the Morison’s formula are used to calculate hydrodynamic loads. The quasi-static catenary mooring method is implemented to calculate restoring forces from mooring lines. Kane’s dynamic equations are used to establish dynamic governing equation for the system. The generator-torque controller and the full-span rotor-collective blade-pitch controller are used to regulate wind energy tracking. Subsequently, feasibility testing of the code is conducted by a series of code-to-code comparisons, which will benefit researchers in their theoretical study and development of numerical code for floating offshore wind turbines.

Cite this article

CHEN Jiahao,LIU Geliang,HU Zhiqiang . Development and Validation of a Time-Domain Coupling Simulation Code for Floating Offshore Wind Turbines[J]. Journal of Shanghai Jiaotong University, 2019 , 53(12) : 1440 -1449 . DOI: 10.16183/j.cnki.jsjtu.2019.12.006

References

[1]ZHANG X C, MA C, SONG X, et al. The impacts of wind technology advancement on future global energy[J]. Applied Energy, 2016, 184: 1033-1037. [2]MULIAWAN M J, KARIMIRAD M, GAO Z, et al. Extreme responses of a combined spar-type floating wind turbine and floating wave energy converter (STC) system with survival modes[J]. Ocean Engineering, 2013, 65: 71-82. [3]BUTTERFIELD S, MUSIAL W, JONKMAN J, et al. Engineering challenges for floating offshore wind turbines[R/OL].(2007-09-01)[2018-03-15]. https://www.osti.gov/biblio/917212. [4]LEE K H. Responses of floating wind turbines to wind and wave excitation[D]. Cambridge, USA: Massachusetts Institute of Technology, 2005. [5]WAYMAN E N, SCLAVOUNOS P D, BUTTERFIELD S, et al. Coupled dynamic modeling of floating wind turbine systems[R/OL].(2006-03-01)[2018-03-15]. https://www.osti.gov/biblio/877423. [6]JONKMAN J M, BUHL J M L. FAST user’s guide, national renewable energy laboratory: NREL/EL-500-38230[R]. Golden, Colorado, USA: National Renewable Energy Laboratory, 2005. [7]LARSEN T J, HANSEN A M. How 2 HAWC2, the user’s manual[R/OL]. (2007-11-03)[2018-03-15]. https://orbit.dtu.dk/en/publications/id(18aac953-55e6-4130-9b54-a6830618c5ca).html. [8]CORDLE A, JONKMAN J. State of the art in floating wind turbine design tools: NREL/CP-5000-50543[R]. Golden, Colorado, USA: National Renewable Energy Laboratory, 2011. [9]唐友刚, 李嘉文, 曹菡, 等. 新型海上风机浮式平台运动的频域分析[J]. 天津大学学报(自然科学与工程技术版), 2013, 46(10): 879-884. TANG Yougang, LI Jiawen, CAO Han, et al. Frequency domain analysis of motion of floating platform for offshore wind turbine[J]. Journal of Tianjin University (Science and Technology), 2013, 46(10): 879-884. [10]MA Y, HU Z Q, XIAO L F. Wind-wave induced dynamic response analysis for motions and mooring loads of a spar-type offshore floating wind turbine[J]. Journal of Hydrodynamics, 2014 26(6): 865-874. [11]赵文超, 万德成. 海上浮式风力机叶片气动性能的数值模拟[J]. 水动力学研究与进展, 2014, 29(6): 663-669. ZHAO Wenchao, WAN Decheng. Numerical simulation of aerodynamic characteristics of floating offshore wind turbine blades[J]. Chinese Journal of Hydrodynamics, 2014, 29(6): 663-669. [12]刘利琴, 郭颖, 赵海祥, 等. 浮式垂直轴风机的动力学建模、仿真与实验研究[J]. 力学学报, 2017, 49(2): 299-307. LIU Liqin, GUO Ying, ZHAO Haixiang, et al. Dynamic modeling, simulation and model tests research on the floating VAWT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2): 299-307. [13]FALTINSEN O. Sea loads on ships and offshore structures[M].Cambridge, USA: Cambridge University Press, 1993: 10-20. [14]MASCIOLA M, JONKMAN J, ROBERTSON A. Implementation of a multisegmented, quasi-static cable model[C]//The 23th International Offshore and Polar Engineering Conference. Alaska, USA: International Society of Offshore and Polar Engineers, 2013: ISOPE-I-13-127. [15]HANSEN M O L, SRENSEN J N, VOUTSINAS S, et al. State of the art in wind turbine aerodyna-mics and aeroelasticity[J]. Progress in Aerospace Sciences, 2006, 42(4): 285-330. [16]HANSEN M O L. Aerodynamics of wind turbines [M]. London, UK: Routledge, 2015. [17]SNEL H. Review of aerodynamics for wind turbines [J]. Wind Energy, 2003, 6(3): 203-211. [18]NOWAKOWSKI C, FEHR J, FISCHER M, et al. Model order reduction in elastic multibody systems using the floating frame of reference formulation[J]. IFAC Proceedings Volumes, 2012, 45(2): 40-48. [19]LIU J Y, HONG J Z. Geometric stiffening of flexible link system with large overall motion [J]. Computers & Structures, 2003, 81(32): 2829-2841. [20]LIU J Y, HONG J Z. Geometric stiffening effect on rigid-flexible coupling dynamics of an elastic beam[J]. Journal of Sound and Vibration, 2004, 278(4/5): 1147-1162. [21]KANE T R, LEVINSON D A. The use of Kane’s dynamical equations in robotics [J]. International Journal of Robotics Research, 1983, 2(3): 3-21. [22]JONKMAN J M. Dynamics modeling and loads analysis of an offshore floating wind turbine: NREL/TP-500-41958 [R]. Golden, Colorado, USA: National Renewable Energy Lab, 2007. [23]CHEN J H, HU Z Q, LIU G L, et al. Comparison of different dynamic models for floating wind turbines[J]. Journal of Renewable and Sustainable Energy, 2017, 9(6): 063304. [24]JONKMAN J M. Definition of the floating system for phase IV of OC3: NREL/TP-500-47535 [R]. Golden, Colorado, USA: National Renewable Energy Lab, 2010.
Outlines

/