Numerical Simulation of Temperature Rise Distribution of Particle Reinforced Composites Under Thermal Loads

Expand
  • School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China

Online published: 2019-12-11

Abstract

Alternation between high and low temperatures is one of the key factors that severely affect the performance of the particle reinforced composites applied on the spacecrafts serving in rigorous space environment. Thermal loads result in surface and subsurface temperature rise changes of the materials, further lead to the surface thermal deformation and the interior thermal stress, and severely influence the mechanical performance of the materials. In the particle reinforced composites, the reinforcement has the heat conduction properties which are inconsistant with the base material, and whose distribution is irregular. Thus, steady state heat conduction in composites and its temperature rise distribution become quite complicated. Based on the equivalent inclusion method, a numerical analysis method for solving the temperature rise distribution of the composites under thermal loads was proposed, and its efficiency was promoted by appling a conjugate gradient method (CGM) and fast Fourier transform (FFT) method. The results demonstrate that the shape, the size, the location and the heat conduction property of the particle reinforcements have a significant influence on the temperature rise distribution inside of the particle reinforced composites.

Cite this article

YANG Wanyou,WANG Jiaxu,HUANG Yanyan,ZHOU Qinghua,YANG Yong . Numerical Simulation of Temperature Rise Distribution of Particle Reinforced Composites Under Thermal Loads[J]. Journal of Shanghai Jiaotong University, 2019 , 53(11) : 1342 -1351 . DOI: 10.16183/j.cnki.jsjtu.2019.11.010

References

[1]LIU S B, WANG Q. Transient thermoelastic stress fields in a half-space[J]. Journal of Tribology, 2003, 125(1): 33-43. [2]欧阳求保, 金方杰, 张荻, 等. SiCp/7A04铝基复合材料的高温变形行为[J]. 上海交通大学学报, 2008, 42(9): 1405-1409. OUYANG Qiubao, JIN Fangjie, ZHANG Di, et al. The deformation behaviors of SiCp/7A04 composites at high temperatures[J]. Journal of Shanghai Jiao Tong University, 2008, 42(9): 1405-1409. [3]CARSLAW H S, JAEGER J C. Conduction of heat in solids[M]. Oxford: Oxford University Press, 1986. [4]FRANCIS H A. Interfacial temperature distribution within a sliding hertzian contact[J]. A S L E Transactions, 1971, 14(1): 41-54. [5]TIAN X F, KENNEDY F E. Maximum and average flash temperatures in sliding contacts[J]. Journal of Tribology, 1994, 116(1): 167-174. [6]LIU S B, WANG Q, HARRIS S J. Surface normal thermoelastic displacement in moving rough contacts[J]. Journal of Tribology, 2003, 125(4): 862-868. [7]BARBER J R, MARTIN-MORAN C J. Green's functions for transient thermoelastic contact problems for the half-plane[J]. Wear, 1982, 79(1): 11-19. [8]SEO K, MURA T. The elastic field in a half space due to ellipsoidal inclusions with uniform dilatational eigenstrains[J]. Journal of Applied Mechanics, 1979, 46(3): 568-572. [9]BAZYAR M H, TALEBI A. Scaled boundary finite-element method for solving non-homogeneous anisotropic heat conduction problems[J]. Applied Mathematical Modelling, 2015, 39(23/24): 7583-7599. [10]MORTAZAVI B, BANIASSADI M, BARDON J, et al. Modeling of two-phase random composite materials by finite element, Mori-Tanaka and strong contrast methods[J]. Composites Part B: Engineering, 2013, 45(1): 1117-1125. [11]余天堂, 万林林. 非均质材料热传导问题的扩展有限元法[J]. 计算力学学报, 2011, 28(6): 884-890. YU Tiantang, WAN Linlin. Extended finite element method for heat transfer problems in heterogeneous material[J]. Chinese Journal of Computational Mechanics, 2011, 28(6): 884-890. [12]陈康, 许希武. 梯度复合材料热传导分析的梯度单元法[J]. 复合材料学报, 2012, 29(4): 178-185. CHEN Kang, XU Xiwu. Graded element method for the heat conduction analysis of gradient composites[J]. Acta Materiae Compositae Sinica, 2012, 29(4): 178-185. [13]张锐, 文立华, 杨淋雅, 等. 复合材料热传导系数均匀化计算的实现方法[J]. 复合材料学报, 2014, 31(6): 1581-1587. ZHANG Rui, WEN Lihua, YANG Linya, et al. Realization methods of computational homogenization for thermal conductivity coefficient of composites[J]. Acta Materiae Compositae Sinica, 2014, 31(6): 1581-1587. [14]蒋日鹏, 李晓谦, 李开烨, 等. 超声对铝合金凝固传热与组织形成的影响与作用机制[J]. 中南大学学报(自然科学版), 2012, 43(10): 3807-3813. JIANG Ripeng, LI Xiaoqian, LI Kaiye, et al. Effect of ultrasonic on heat transfer and microstructure formation of aluminum alloy during solidification and its mechanism[J]. Journal of Central South University (Science and Technology), 2012, 43(10): 3807-3813. [15]李专, 肖鹏, 熊翔, 等. C/C-SiC复合材料的导热性能及其影响因素[J]. 中南大学学报(自然科学版), 2013, 44(1): 40-45. LI Zhuan, XIAO Peng, XIONG Xiang, et al. Thermal conductivity of C/C-SiC composites and its influence factors[J]. Journal of Central South University (Science and Technology), 2013, 44(1): 40-45. [16]ESHELBY J D. The elastic field outside an ellipsoidal inclusion[J]. Proceedings of the Royal Society of London, Series A: Mathematical and Physical Sciences, 1959, 252(1271): 561-569. [17]ZHOU Q H, JIN X Q, WANG Z J, et al. An efficient approximate numerical method for modeling contact of materials with distributed inhomogeneities[J]. International Journal of Solids and Structures, 2014, 51(19/20): 3410-3421. [18]ZHOU Q H, WANG J X, WAN Q, et al. Numerical analysis of the influence of distributed inhomogeneities on tangential fretting[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2017, 231(10): 1350-1370. [19]周青华, 王家序, 杨勇, 等. 增强体对复合材料接触性能的影响[J]. 复合材料学报, 2017, 34(2): 389-399. ZHOU Qinghua, WANG Jiaxu, YANG Yong, et al. Influence of reinforcements on the contact perfor-mance of composites[J]. Acta Materiae Compositae Sinica, 2017, 34(2): 389-399. [20]ZHOU K, KEER L M, WANG Q J. Semi-analytic solution for multiple interacting three-dimensional inhomogeneous inclusions of arbitrary shape in an infinite space[J]. International Journal for Numerical Methods in Engineering, 2011, 87(7): 617-638. [21]YANG W Y, HUANG Y Y, ZHOU Q H, et al. Parametric study on stressed volume and its application to the quantification of rolling contact fatigue performance of heterogeneous material[J]. Tribology International, 2017, 107: 221-232. [22]杨万友, 周青华, 王家序, 等. 考虑异质材料的线接触性能建模与分析[J]. 复合材料学报, 2016, 33(8): 1848-1858. YANG Wanyou, ZHOU Qinghua, WANG Jiaxu, et al. Modeling and analysis on line contact performance of considering heterogeneous properties of material[J]. Acta Materiae Compositae Sinica, 2016, 33(8): 1848-1858. [23]HIROSHI H, MINORU T. Equivalent inclusion method for steady state heat conduction in composites[J]. International Journal of Engineering Science, 1986, 24(7): 1159-1172. [24]CHIU Y P. On the stress field and surface deformation in a half space with a cuboidal zone in which initial strains are uniform[J]. Journal of Applied Mechanics, 1978, 45(2): 302-306. [25]MURA T. Micromechanics of defects in solids[M]. Dordrecht: Springer, 1987. [26]JIN X Q, WANG Z J, ZHOU Q H, et al. On the solution of an elliptical inhomogeneity in plane elasti-city by the equivalent inclusion method[J]. Journal of Elasticity, 2014, 114(1): 1-18. [27]CHEN W W, LIU S B, WANG Q J. Fast Fourier transform based numerical methods for elasto-plastic contacts of nominally flat surfaces[J]. Journal of Applied Mechanics, 2008, 75(1): 011022.
Outlines

/