In order to study the capillary properties of superhydrophilic copper foam and the effect of evaporation of volatile working fluid on capillary performance parameters, the experiments on the capillary rise of superhydrophilic copper foam were carried out with water and ethanol as working fluids. The capillary performance parameters corresponding to different working fluids were obtained by using different theoretical models. The capillary performance parameters of different working fluids in the same sample were analyzed and compared. The results show that the evaporation of ethanol has a great influence on the capillary rise process. Based on the results, a method for accurately obtaining capillary performance parameters is proposed for volatile working fluids,and the capillary properties of superhydrophilic copper foam are systematically analyzed.
JIANG Yuting,ZHANG Peng,LÜ Fengyong
. Capillary Performance of Superhydrophilic Copper Foams with
Volatile Working Fluid[J]. Journal of Shanghai Jiaotong University, 2019
, 53(11)
: 1294
-1301
.
DOI: 10.16183/j.cnki.jsjtu.2019.11.004
[1]KUNDAN A, PLAWSKY J L, WAYNER P C, et al. Thermocapillary phenomena and performance pimitations of a wickless heat pipe in microgravity[J]. Physical Review Letters, 2015, 114(14): 146105.
[2]RAVI S, HORNER D, MOGHADDAM S. A novel method for characterization of liquid transport through micro-wicking arrays[J]. Microfluidics & Nanofluidics, 2014, 17(2): 349-357.
[3]邓大祥. 微尺度热质输运强化槽道多孔结构制造及性能研究[D]. 广州: 华南理工大学, 2013.
DENG Daxiang. Fabrication and performance of grooved porous structures for micro-scale heat & masstransport enhancement[D].Guangzhou: South China University of Technology, 2013.
[4]SHIRAZY M R S, FRCHETTE L G. Capillary and wetting properties of copper metal foams in the presence of evaporation and sintered walls[J]. International Journal of Heat and Mass Transfer, 2013, 58(1/2): 282-291.
[5]YAO S G Y, DENG J W, SHENG D, et al. Experimental investigation on the heat transfer performance of heat pipes with porous copper foam wicks[J]. Materials Research Innovations, 2015, 19(Sup 5): 617-622.
[6]NAM Y, JU Y S. A comparative study of the morphology and wetting characteristics of micro/nanostructured Cu surfaces for phase change heat transfer applications[J]. Journal of Adhesion Science and Technology, 2013, 27(20): 2163-2176.
[7]HOLLEY B, FAGHRI A. Permeability and effective pore radius measurements for heat pipe and fuel cell applications[J]. Applied Thermal Engineering, 2006, 26(4): 448-462.
[8]DENG D X, TANG Y, ZENG J, et al. Characterization of capillary rise dynamics in parallel micro V-grooves[J]. International Journal of Heat and Mass Transfer, 2014, 77: 311-320.
[9]LUCAS R. Ueber das zeitgesetz des kapillaren aufstiegs von flüssigkeiten[J]. Colloid & Polymer Science, 1918, 23(1): 15-22.
[10]WASHBURN E W. The dynamics of capillary flow[J]. Physical Review, 1921, 17(3): 273.
[11]FRIES N, DREYER M. An analytic solution of capillary rise restrained by gravity[J]. Journal of Colloid & Interface Science, 2008, 320(1): 259-263.
[12]FRIES N, ODIC K, CONRATH M, et al. The effect of evaporation on the wicking of liquids into a metallic weave[J]. Journal of Colloid & Interface Science, 2008, 321(1): 118-129.
[13]TANG Y, DENG D X, HUANG G H, et al. Effect of fabrication parameters on capillary performance of composite wicks for two-phase heat transfer devices[J]. Energy Conversion and Management, 2013, 66: 66-76.
[14]刘侨鹏. 铜超亲水复合吸液芯制造及其润湿和毛细性能研究[D]. 广州: 华南理工大学, 2016.
LIU Qiaopeng. Fabrication of copper superhydrophilic composite wick and its wettability and capillary performance study[D].Guangzhou: South China University of Technology, 2016.
[15]BHATTACHARYA A, CALMIDI V V, MAHAJAN R L . Thermophysical properties of high porosity metal foams[J]. International Journal of Heat and Mass Transfer, 2002, 45(5): 1017-1031.
[16]CALMIDI V V, MAHAJAN R L. Forced convection in high porosity metal foams[J]. Journal of Heat Transfer, 2000, 122(3): 557-565.
[17]FOURIE J G, DU PLESSIS J P. Pressure drop modelling in cellular metallic foams[J]. Chemical Engineering Science, 2002, 57(14): 2781-2789.
[18]HUANG D J, LEU T S. Fabrication of high wettability gradient on copper substrate[J]. Applied Surface Science, 2013, 280: 25-32.
[19]ZHANG Q B, ZHANG K L, XU D G, et al. CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications[J]. Progress in Materials Science, 2014, 60: 208-337.
[20]童钧耕, 吴孟余, 王平阳. 高等工程热力学[M]. 北京: 科学出版社, 2006: 154-159.
TONG Jungeng, WU Mengyu, WANG Pingyang. Advance engineering thermodynamics[M]. Beijing: Science Press, 2006: 154-159.
[21]MOFFAT R J. Describing the uncertainties in experimental results[J]. Experimental Thermal & Fluid Science, 1988, 1(1): 3-17.
[22]SINGH R, AKBARZADEH A, MOCHIZUKI M. Effect of wick characteristics on the thermal performance of the miniature loop heat pipe[J]. Journal of Heat Transfer, 2009, 131(8): 082601.