Dot-Track Association Algorithm for Radar Electronic Support Measurement Systems Based on Support Vector Machine

Expand
  • 1. Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China; 2. AVIC Leihua Electronic Technology Research Institute, Wuxi 214063, Jiangsu, China

Online published: 2019-10-11

Abstract

Probabilistic data association is an important issue in multi-source information fusion algorithms. The data association problem based on radar and electronic support measurement (ESM) sensors is mainly discussed in this paper. As the azimuthal data of radar and ESM sensors have approximately the same distribution, the discriminant function can be obtained through the analysis of ESM data, and the corresponding decision rules can be used to associate the dots and tracks. The association issue can be essentially regarded as a pattern recognition problem. In this paper, considering the good performance of support vector machine(SVM) in pattern classification, we establish a dotting and tracking association model for radar ESM systems based on SVM algorithm. We train the SVM model with ESM data, and classify the radar data to acquire association result. Finally, the simulation results show that the association accuracy can be effectively improved compared with the classical multiple hypothesis tracking algorithm.

Cite this article

WANG Jiangzhuo,XU Wencong,LI Jianxun,HE Fengshou,CAO Lanying,MIAO Lifeng . Dot-Track Association Algorithm for Radar Electronic Support Measurement Systems Based on Support Vector Machine[J]. Journal of Shanghai Jiaotong University, 2019 , 53(9) : 1091 -1099 . DOI: 10.16183/j.cnki.jsjtu.2019.09.011

References

[1]麦新晨, 杨明, 王春香, 等. 一种基于多传感器融合的车辆检测与跟踪方法[J]. 上海交通大学学报, 2011, 45(7): 1012-1016.
MAI Xinchen, YANG Ming, WANG Chunxiang, et al. Multi-sensor fusion based vehicle detection and tracking method[J]. Journal of Shanghai Jiao Tong University, 2011, 45(7): 1012-1016.
[2]VO B N, VO B T, HOANG H G. An efficient implementation of the generalized labeled multi-Bernou-lli filter[J]. IEEE Transactions on Signal Processing, 2017, 65(8): 1975-1987.
[3]高萌. 雷达航迹处理算法及仿真平台设计与实现[D]. 西安: 西安电子科技大学, 2015.
GAO Meng. Algorithm on radar track processing and design and implementation of simulation platform[D]. Xi’an: Xidian University, 2015.
[4]SINGER R A, STEIN J J. An optimal tracking filter for processing sensor data of imprecisely determined origin in surveillance systems[C]//IEEE Conference on Decision and Control. Miami Beach, FL, USA: IEEE, 1971: 171-175.
[5]FORTMANN T E, BAR-SHALOM Y, SCHEFFE M. Sonar tracking of multiple targets using joint probabilistic data association[J]. IEEE Journal of Oceanic Engineering, 1983, 8(3): 173-184.
[6]BAR-SHALOM Y, TSE E. Tracking in a cluttered environment with probabilistic data association[J]. Automatica, 1975, 11(5): 451-460.
[7]REID D B. An algorithm for tracking multiple targets[J]. IEEE Transactions on Automatic Control, 1979, 24(6): 843-854.
[8]MAHLER R P S. Multitarget Bayes filtering via first-order multitarget moments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1152-1178.
[9]MAHLER R. PHD filters of higher order in target number[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(4): 1523-1543.
[10]LI W, LEUNG H, ZHOU Y F. Space-time registration of radar and ESM using unscented Kalman filter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(3): 824-836.
[11]TRUNK G V, WILSON J D. Association of DF bearing measurements with radar tracks[J]. IEEE Transactions on Aerospace and Electronic Systems, 1987, 23 (4): 438-447.
[12]王国宏. 雷达/ESM模糊相关算法[J]. 电子对抗, 1995(4): 1-8.
WANG Guohong. Radar/ESM fuzzy correlation algorithm[J]. Electronic Warfare, 1995(4): 1-8.
[13]WANG G H, HE Y, SHEN N, et al. A new radar-ESM correlation algorithm in multisensor data fusion[C]//Proceedings of International Radar Conference. Beijing, China: IEEE, 1996: 747-750.
[14]王国宏, 何友. 基于贝努里分布参数检验的雷达与ESM航迹相关决策方法[J]. 控制与决策, 1998, 13(1): 39-43.
WANG Guohong, HE You. Correlation of ESM track with radar tracks based on Bernoulli parameter testing[J]. Control and Decision, 1998, 13(1): 39-43.
[15]关欣, 彭彬彬, 衣晓. 基于区间重合度的雷达与ESM航迹关联算法[J]. 雷达科学与技术, 2017, 15(1): 61-67.
GUAN Xin, PENG Binbin, YI Xiao. Track asso-ciation algorithm of radar and ESM based on interval overlap ratio[J]. Radar Science and Technology, 2017, 15(1): 61-67.
[16]彭彬彬, 关欣. 基于空间分布信息的雷达与ESM航迹灰色关联算法[J]. 电光与控制, 2017, 24(6): 34-38.
PENG Binbin, GUAN Xin. Gray track correlation algorithm of radar and ESM based on spatial distribution information[J]. Electronics Optics & Control, 2017, 24(6): 34-38.
[17]BURGES C J C. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery, 1998, 2(2): 121-167.
Outlines

/