The Compressible Effect on Characteristics and Translate Velocity of Vortex Ring

Expand
  • School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai 200240, China

Online published: 2019-10-11

Abstract

Vortex ring is the fundamental structure in three dimensional fluid field. Three dimensional Navier-Stokes simulations are performed through finite volume method to reveal the compressible effect on axial symmetry vortex ring generated at the open end of a shock tube. Local Mach number and vortex Mach number can characterize the compressibility quantificationally. Compressibility vortex ring can be classified into three categories which correspond to subsonic, transonic and supersonic. The parameters related to vortex ring structure are also affected by compressibility. As the increase of compressibility, the vorticity profile in vortex core deviates from Gaussian distribution and the concentrated vorticity fields in the vortex core diminishes; the radius of vortex ring increase with the increasing compressibility; the radius of vortex core increase first then decrease slightly due to the embedded shock wave. The velocity of vortex ring is proportional to the compressibility. The theoretical velocity obtained from simulation agrees well with the calculated value obtained by vortex Mach number, which indicates that the formula is suitable to all three kinds of compressible vortex rings.

Cite this article

LIN Haiyan,XIANG Yang,ZHANG Bin,LIU Hong . The Compressible Effect on Characteristics and Translate Velocity of Vortex Ring[J]. Journal of Shanghai Jiaotong University, 2019 , 53(9) : 1030 -1039 . DOI: 10.16183/j.cnki.jsjtu.2019.09.003

References

[1]SHARIFF K, LEONARD A. Vortex rings[J]. Annual Review of Fluid Mechanics, 1992, 24: 235-279.
[2]SULLIVAN I S, NIEMELA J J, HERSHBERGER R E, et al. Dynamics of thin vortex rings[J]. Journal of Fluid Mechanics, 2008, 609: 319-347.
[3]XIANG Y, LIN H Y, ZHANG B, et al. Quantitative analysis of vortex added-mass and impulse generation during vortex ring formation based on elliptic Lagrangian coherent structures[J]. Experimental Thermal and Fluid Science, 2018, 94: 295-303.
[4]GHARIB M, RAMBOD E, SHARIFF K. A universal time scale for vortex ring formation[J]. Journal of Fluid Mechanics, 1998, 360: 121-140.
[5]XIANG Y, QIN S Y, LIU H. Patterns for efficient propulsion during the energy evolution of vortex rings[J]. European Journal of Mechanics B-Fluids, 2018, 71: 47-58.
[6]QIN S Y, LIU H, XIANG Y. On the formation modes in vortex interaction for multiple co-axial corotating vortex rings[J]. Physics of Fluids, 2018, 30(1): 011901.
[7]FERNNDEZ J J P, SESTERHENN J. Compressible starting jet: Pinch-off and vortex ring-trailing jet interaction[J]. Journal of Fluid Mechanics, 2017, 817: 560-589.
[8]RANJAN D, OAKLEY J, BONAZZA R. Shock-bubble interactions[J]. Annual Review of Fluid Mechanics, 2011, 43: 117-140.
[9]ELDER F K, DE HAAS N. Experimental study of the formation of a vortex ring at the open end of a cylindrical shock tube[J]. Journal of Applied Physics, 1952, 23(10): 1065-1069.
[10]ARAKERI J H, DAS D, KROTHAPALLI A, et al. Vortex ring formation at the open end of a shock tube: A particle image velocimetry study[J]. Physics of Fluids, 2004, 16(4): 1008-1019.
[11]DORA C L, SARAVANAN D, KARUNAKAR K, et al. Characteristics of embedded-shock-free compressible vortex rings: A detailed study using PIV[J]. Advances in Mechanical Engineering, 2011, 3: 650871.
[12]BAIRD J P. Supersonic vortex rings[J]. Proceedings of the Royal Society of London Series A, 1987, 409(1836): 59-65.
[13]BROUILLETTE M, TARDIF J, GAUTHIER E. Experimental study of shock-generated vortex rings[C]//Shock Waves@Marseille IV. Berlin, Germany: Springer-Verlag, 1995: 361-366.
[14]BROUILLETTE M, HBERT C. Propagation and interaction of shock-generated vortices[J]. Fluid Dynamics Research, 1997, 21(3): 159-169.
[15]KONTIS K, AN R, EDWARDS J A. Compressible vortex-ring interaction studies with a number of generic body configurations[J]. AIAA Journal, 2006, 44(12): 2962-2978.
[16]THANGADURAI M, DAS D. Characteristics of counter-rotating vortex rings formed ahead of a compressible vortex ring[J]. Experiments in Fluids, 2010, 49(6): 1247-1261.
[17]MURUGAN T, DE S, DORA C L, et al. Numerical simulation and PIV study of compressible vortex ring evolution[J]. Shock Waves, 2012, 22(1): 69-83.
[18]DORA C L, MURUGAN T, DE S, et al. Role of slipstream instability in formation of counter-rotating vortex rings ahead of a compressible vortex ring[J]. Journal of Fluid Mechanics, 2014, 753: 29-48.
[19]DABIRI J O, GHARIB M. Fluid entrainment by isolated vortex rings[J]. Journal of Fluid Mechanics, 2004, 511: 311-331.
[20]秦苏洋, 向阳, 刘洪. 活塞和圆盘涡环的运动学特征分析[J]. 上海交通大学学报, 2016, 50(2): 294-299.
QIN Suyang, XIANG Yang, LIU Hong. Comparative study of kinematics characteristics of vortex rings generated by piston and disc[J]. Journal of Shanghai Jiao Tong University, 2016, 50(2): 294-299.
[21]OLCAY A B, KRUEGER P S. Measurement of ambient fluid entrainment during laminar vortex ring formation[J]. Experiments in Fluids, 2008, 44(2): 235-247.
[22]SAFFMAN P G. Dynamics of vorticity[J]. Journal of Fluid Mechanics, 1981, 106: 49-58.
[23]MOORE D W. The effect of compressibility on the speed of propagation of a vortex ring[J]. Proceedings of the Royal Society of London Series A, 1985, 397(1812): 87-97.
[24]NORBURY J. A family of steady vortex rings[J]. Journal of Fluid Mechanics, 1973, 57(3): 417-431.
Outlines

/