Towing Winch Control System for a New Cable Laying Ship

Expand
  • State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China

Online published: 2019-09-10

Abstract

A towing winch control system based on industrial ethernet and programmable logic controller is designed for a new cable laying ship. An automatic cable arrangement system and a constant tension controller based on the fuzzy adaptive P+ID algorithm are proposed to improve the intelligence of the towing winch control system. The comparative studies of the proposed constant tension controller based on the fuzzy adaptive P+ID and conventional PID controllers were conducted, and the simulation results show that the fuzzy adaptive P+ID controller designed in this paper has a better performance than the PID controller. The real applications under harsh sea conditions demonstrated the robustness and effectiveness of the automatic cable arrangement system and the constant tension controller.

Cite this article

CHEN Qi,LI Gelun . Towing Winch Control System for a New Cable Laying Ship[J]. Journal of Shanghai Jiaotong University, 2019 , 53(8) : 990 -999 . DOI: 10.16183/j.cnki.jsjtu.2019.08.015

References

[1]VENTIKOS N P, STAVROU D I. Submarine power cables: Laying procedure, the fleet and reliability analysis [J]. Journal of Marine Engineering & Technology, 2013, 12(1): 13-26. [2]LENTZ S. New applications for submarine cables [M]. CHESNOY J. Undersea Fiber Communication Systems. 2nd ed. Amsterdam: Elsevier, 2016: 301-340. [3]CHEN Q, LI W, CHEN G S. FUZZY P+ID controller for a constant tension winch in a cable laying system [J]. IEEE Transactions on Industrial Electronics, 2017, 64(4): 2924-2932. [4]李亚南, 祁圣民, 张鹏, 等. 一种重载减张力拖曳绞车的设计研究[J]. 海洋工程, 2014, 32(3): 122-126. LI Yanan, QI Shengmin, ZHANG Peng, et al. Design and research of a heavy-load tension-reduction towing winch [J]. The Ocean Engineering, 2014, 32(3): 122-126. [5]刘乐, 韩宇, 方一鸣, 等. 可逆冷带轧机速度张力系统的模糊自适应动态面反步控制[J]. 控制理论与应用, 2017, 34(3): 355-366. LIU Le, HAN Yu, FANG Yiming, et al. Fuzzy adaptive dynamic surface backstepping control for the speed and tension system of reversible cold strip rolling mill [J]. Control Theory & Applications, 2017, 34(3): 355-366. [6]白锐, 佟绍成, 柴天佑. 连续退火机组张紧辊带钢张力的建模及解耦控制[J]. 控制理论与应用, 2013, 30(3): 392-397. BAI Rui, TONG Shaocheng, CHAI Tianyou. Mo-deling and decoupling control for the strip tension of bridling roll in the continuous annealing line [J]. Control Theory & Applications, 2013, 30(3): 392-397. [7]LIU Y, YUAN R, SHAN Z. Design and simulation for electro-hydraulic proportional tension control system [J]. Applied Mechanics and Materials, 2015, 779: 250-255. [8]TRAN A M D, JUNG S H, YOON J I, et al. Vessel motion control using rope tension control strategy [J]. International Journal of Control, Automation and Systems, 2016, 14(4): 915-923. [9]王健强, 王长润, 孙纯哲, 等. 多PLC及多级现场总线在机器人焊装线中的应用[J]. 上海交通大学学报, 2008(Sup.1): 20-24. WANG Jianqiang, WANG Changrun, SUN Chunzhe, et al. Application of multi-PLC and multilevel field-bus in robot welding line [J]. Journal of Shanghai Jiao Tong University, 2008(Sup.1): 20-24. [10]霍星星, 葛彤, 王旭阳. 基于模糊补偿的深海作业级远程操控潜水器自适应位姿控制[J]. 上海交通大学学报, 2017, 51(4): 403-409. HUO Xingxing, GE Tong, WANG Xuyang. Adaptive position and attitude control for deep sea work-class remotely operated underwater vehicle based on fuzzy compensation [J]. Journal of Shanghai Jiao Tong University, 2017, 51(4): 403-409. [11]ZHANG Y S, YANG T, LI C Y, et al. Fuzzy-PID control for the position loop of aerial inertially stabilized platform [J]. Aerospace Science and Technology, 2014, 36: 21-26. [12]LI W. Design of a hybrid fuzzy logic proportional plus conventional integral-derivative controller [J]. IEEE Transactions on Fuzzy Systems, 1998, 6(4): 449-463.
Outlines

/