Characteristics of Surface Heat Flux in Shanghai During Summer and Its Influencing Factors

Expand
  • 1. Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, China; 2. Advanced Technology R&D Center, Mitsubishi Electric Corporation, Hyogo 661-8661, Japan

Online published: 2019-09-10

Abstract

The test accuracy of soil heat flux at 5 mm is verified through thermal diffusion equation-correction (TDEC) method, which can represent the surface heat flux. Meanwhile, considering different factors (solar radiation, soil moisture content and cloud cover, etc.), the diurnal variations of heat flux on three kinds of typical days (clear, cloudy and rainy days) are summarized in Shanghai. The influence of different factors on soil heat flux at 5mm and the principles are comprehensively analyzed through variable control approaches. The results show that soil heat flux at 5 mm obviously fluctuates on clear days, from -23.62W/m2 to 111.81W/m2. The fluctuation range decreases with the decrease of soil depth on cloudy and rainy days. The correlation (R2>0.74) between solar radiation and soil heat flux is strong on days without rain. The fluctuation range of soil heat flux is reduced by the increase of soil moisture content. Soil heat flux of different typical days is mostly affected by different factors.

Cite this article

LU Yifan,LI Yong,SHIGETOSHI Ipposhi,YASUMITSU Nomura,WANG Ruzhu . Characteristics of Surface Heat Flux in Shanghai During Summer and Its Influencing Factors[J]. Journal of Shanghai Jiaotong University, 2019 , 53(8) : 891 -897 . DOI: 10.16183/j.cnki.jsjtu.2019.08.001

References

[1]席加, 秦祥熙, 李少华, 等. 杭州地区大型地源热泵系统全年运行性能研究[J]. 制冷技术, 2017, 37(1): 48-54. XI Jia, QIN Xiangxi, LI Shaohua, et al. Research on annual operation performance of large scale ground source heat pumps in Hangzhou [J]. Chinese Journal of Refrigeration Technology, 2017, 37(1): 48-54. [2]冯璐, 仲雷, 马耀明, 等. 基于土壤温湿度观测资料估算藏北高原地区土壤热通量[J]. 高原气象, 2016, 35(2): 297-308. FENG Lu, ZHONG Lei, MA Yaoming, et al. Estimation of soil heat flux over the Northern Tibetan Plateau based on in-situ soil temperature and moisture data [J]. Plateau Meteorology, 2016, 35(2): 297-308. [3]HEITMAN J L, HORTON R, SAUER T J, et al. Latent heat in soil heat flux measurements [J]. Agricultural and Forest Meteorology, 2010, 150(7/8): 1147-1153. [4]LU S, MA C M, MENG P, et al. Experimental investigation of subsurface soil water evaporation on soil heat flux plate measurement [J]. Applied Thermal Engineering, 2016, 93: 433-437. [5]李娜娜, 贾立, 卢静. 复杂下垫面地表土壤热通量算法改进: 以黑河流域为例[J]. 中国科学: 地球科学, 2015, 45(4): 494-507. LI Nana, JIA Li, LU Jing. An improved algorithm to estimate the surface soil heat flux over a heterogeneous surface: A case study in the Heihe River Basin [J]. Science China: Earth Sciences, 2015, 45(4): 494-507. [6]左金清, 王介民, 黄建平, 等. 半干旱草地地表土壤热通量的计算及其对能量平衡的影响[J]. 高原气象, 2010, 29(4): 840-848. ZUO Jinqing, WANG Jiemin, HUANG Jianping, et al. Estimation of ground heat flux for a semiarid grassland and its impact on the surface energy budget [J]. Plateau Meteorology, 2010, 29(4): 840-848. [7]MURRAY T, VERHOEF A. Moving towards a more mechanistic approach in the determination of soil heat flux from remote measurements. I. A universal approach to calculate thermal inertia [J]. Agricultural and Forest Meteorology, 2007, 147(1/2): 80-87. [8]WANG Z H, BOU-ZEID E. A novel approach for the estimation of soil ground heat flux [J]. Agricultural and Forest Meteorology, 2012, 154/155: 214-221. [9]ARIAS-PENAS D, CASTRO-GARCA M P, REY-RONCO M A, et al. Determining the thermal diffusivity of the ground based on subsoil temperatures: Preliminary results of an experimental geothermal borehole study QTHERMIE-UNIOVI [J]. Geothermics, 2015, 54: 35-42. [10]BENSE V F, READ T, VERHOEF A. Using distributed temperature sensing to monitor field scale dynamics of ground surface temperature and related substrate heat flux [J]. Agricultural and Forest Meteorology, 2016, 220: 207-215. [11]HORTON R, WIERENGA P J, NIELSEN D R. Evaluation of methods for determining the apparent thermal diffusivity of soil near the surface [J]. Soil Science Society of America Journal, 1983, 47: 25-32. [12]高志球, 卞林根, 张雅斌, 等. 土壤热传导方程解析解和那曲地区土壤热扩散率研究[J]. 气象学报, 2002, 60(3): 352-360. GAO Zhiqiu, BIAN Lingen, ZHANG Yabin, et al. Study on analytical resolution to soil thermal conductive equation and soil thermal diffusivity over Nagqu area [J]. Acta Meteorologica Sinica, 2002, 60(3): 352-360. [13]徐自为, 刘绍民, 徐同仁, 等. 不同土壤热通量测算方法的比较及其对地表能量平衡闭合影响的研究[J]. 地球科学进展, 2013, 28(8): 875-889. XU Ziwei, LIU Shaomin, XU Tongren, et al. The observation and calculation method of soil heat flux and its impact on the energy balance closure [J]. Advances in Earth Science, 2013, 28(8): 875-889. [14]SELLERS P J, RANDALL D A, COLLATZ G J, et al. A revised land surface parameterization (SiB2) for atmospheric GCMs. I. Model formulation [J]. Journal of Climate, 1996, 9(4): 676-705. [15]阳坤, 王介民. 一种基于土壤温湿资料计算地表土壤热通量的温度预报校正法[J]. 中国科学(D辑: 地球科学), 2008, 38(2): 243-250. YANG Kun, WANG Jiemin. A temperature prediction-correction method for estimating surface soil heat flux from soil temperature and moisture data [J]. Science in China (Series D: Earth Sciences), 2008, 38(2): 243-250. [16]OGEE J, LAMAUD E, BRUNET Y, et al. A long-term study of soil heat flux under a forest canopy [J]. Agricultural and Forest Meteorology, 2001, 106(3): 173-186. [17]张皓, 李军, 孙国武, 等. 上海地区土壤水分的时间变化特征分析[J]. 高原气象, 2008, 27(增刊): 190-195. ZHANG Hao, LI Jun, SUN Guowu, et al. Characteristics of temporal variability of soil moisture in Shanghai [J]. Plateau Meteorology, 2008, 27(sup): 190-195. [18]张婕, 张文煜, 王晓妍, 等. 半干旱地区土壤湿度变化特征[J]. 兰州大学学报(自然科学版), 2012, 48(2): 57-61. ZHANG Jie, ZHANG Wenyu, WANG Xiaoyan, et al. Changes characteristics of the soil moisture in semiarid areas [J]. Journal of Lanzhou University (Natural Sciences), 2012, 48(2): 57-61. [19]王修信, 付洁, 张晓朋, 等. 喀斯特地区气象因素日变化对不同深度土壤湿度的影响分析[J]. 广西物理, 2012, 33(4): 10-13. WANG Xiuxin, FU Jie, ZHANG Xiaopeng, et al. Effects of diurnal variation of meteorological factors on different depth of soil moisture in Karst regions [J]. Guangxi Physics, 2012, 33(4): 10-13.
Outlines

/