Fast Edge Extraction Algorithm Based on HSV Color Space

Expand
  • Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Online published: 2019-08-02

Abstract

In order to improve the ability of unmanned aerial vehicle (UAV) to detect obstacles, a fast edge detection algorithm is studied and an improved local binary pattern (I-LBP) operator is proposed to enhance the edge extraction effect. In HSV (Hue, Saturation, Value) color space, the I-LBP operator is used to describe the local texture features of pixels. The Hausdorff distance is used to confirm the edge pixels. And the contour of the obstacle is framed in the rectangular box. The algorithm improves the traditional LBP operator according to the fuzzy set theory. The simple binary description of the local texture features is extended to three-dimensional vector. It enhances the LBP operator’s ability to describe the local texture features and is noise-robust.The simulation verification is carried out with MATLAB. The results show that the I-LBP operator has good robustness and can identify obstacles under the condition of poor illumination and noise pollution. It also has high real-time ability, which can meet the requests of UAV in avoiding obstacles.

Cite this article

WANG Hongyu,YIN Wurong,WANG Liang,HU Jianghao,QIAO Wenchao . Fast Edge Extraction Algorithm Based on HSV Color Space[J]. Journal of Shanghai Jiaotong University, 2019 , 53(7) : 765 -772 . DOI: 10.16183/j.cnki.jsjtu.2019.07.001

References

[1]KOWNACKI C. A concept of laser scanner designed to realize 3D obstacle avoidance for a fixed-wing UAV[J]. Robotica, 2016, 34(2): 243-257. [2]CIELUK J, GOSIEWSKI Z. A stereovision system for real time obstacle avoidance by unmanned aerial vehicle[J]. Solid State Phenomena, 2013, 198: 159-164. [3]史浩明. 基于嵌入式平台的无人机视觉跟踪避障方法研究[D]. 南京: 南京航空航天大学, 2016. SHI Haoming. Development of UAV’s visual tracking obstacle avoidance method based on embedded platform[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016. [4]蒋华军, 蔡艳, 李超豪, 等. 基于改进Sobel算法的焊缝X射线图像气孔识别方法[J]. 上海交通大学学报, 2017, 51(6): 665-671. JIANG Huajun, CAI Yan, LI Chaohao, et al. Recognition method for gas pores on X-ray image of lap joints based on the improved Sobel algorithm[J]. Journal of Shanghai Jiao Tong University, 2017, 51(6): 665-671. [5]李忠海, 金海洋, 邢晓红. 整数阶滤波的分数阶Sobel算子的边缘检测算法[J]. 计算机工程与应用, 2018, 54(4): 179-184. LI Zhonghai, JIN Haiyang, XING Xiaohong. Edge detection algorithm of fractional order Sobel operator for integer order differential filtering[J]. Computer Engineering and Applications, 2018, 54(4): 179-184. [6]刘必罡, 杨永红. Laplace-Gaussian滤波算子在指纹增强中的应用[J]. 电子设计工程, 2016, 24(23): 149-152. LIU Bigang, YANG Yonghong. Laplace-Gaussian filter operator in the fingerprint enhancement[J]. Electronic Design Engineering, 2016, 24(23): 149-152. [7]刘克平, 李西卫, 隋吉雷, 等. 基于改进Canny算法的工件边缘检测方法[J]. 广西大学学报(自然科学版), 2017, 42(6): 2022-2029. LIU Keping, LI Xiwei, SUI Jilei, et al. Workpiece edge detection method based on improved Canny algorithm[J]. Journal of Guangxi University (Natural Science Edition), 2017, 42(6): 2022-2029. [8]黄海龙, 王宏, 纪俐. 基于局部模糊增强的顺序形态学边缘检测算法[J]. 仪器仪表学报, 2012, 33(11): 2608-2614. HUANG Hailong, WANG Hong, Ji Li. Order morphology edge detection algorithm based on partial fuzzy enhancement[J]. Chinese Journal of Scientific Instrument, 2012, 33(11): 2608-2614. [9]RATHORE S, SHARMA P K, SANGAIAH A K, et al. A hesitant fuzzy based security approach for fog and mobile-edge computing[J]. IEEE Access, 2018, 6: 688-701. [10]YIN W, CHENG X S, CUI H H, et al. Adaptive and accurate color edge extraction method for one-shot shape acquisition[J]. Optical Engineering, 2016, 55(9): 094104. [11]VERMA O P, PARIHAR A S. An optimal fuzzy system for edge detection in color images using bacterial foraging algorithm[J]. IEEE Transactions on Fuzzy Systems, 2017, 25(1): 114-127. [12]ZOTIN A. Fast algorithm of image enhancement based on nulti-scale retinex[J]. Procedia Computer Science, 2018, 131: 6-14. [13]KRUSE A W, ALENIN A S, VAUGHN I J, et al. Perceptually uniform color space for visualizing trivariate linear polarization imaging data[J]. Optics Letters, 2018, 43(11): 2426-2429. [14]ZHANG G, SU G D, CHEN J S, et al. Local information enhanced LBP[J]. Journal of Central South University, 2013, 20(11): 3150-3155. [15]CHEN L, WANG J J, SUN B. Facial expression recognition based on the Q-shift DT-CWT and rotation invariant LBP[J]. Journal of Donghua University (English Edition), 2012, 29(1): 71-75. [16]BEZDEK J C, EHRLICH R, FULL W. FCM: The fuzzy c-means clustering algorithm[J]. Computers & Geosciences, 1984, 10(2/3): 191-203. [17]衡德正, 羊军, 李志敏, 等. 基于Frenet标架的车门匹配[J]. 上海交通大学学报, 2018, 52(3): 318-323. HENG Dezheng, YANG Jun, LI Zhimin, et al. Automobile door fitting based on Frenet frame[J]. Journal of Shanghai Jiao Tong University, 2018, 52(3): 318-323. [18]AMERI M R, STAUFFER M, RIESEN K, et al. Graph-based keyword spotting in historical manuscripts using Hausdorff edit distance[J]. Pattern Recognition Letters, 2019, 121: 61-67.
Outlines

/