Since compression refrigeration system has problems of delay, coupling and external disturbance, an improved Smith predictive decoupling control based on disturbance observer has been proposed. First, the disturbance observer is used to observe overall disturbances of the system in the conventional Smith predictive control structure. The time-delay element is linearized by first-order Pade model. Then a diagonal matrix is applied to decouple the compression refrigeration system. Finally, the tuning of the controller parameter is realized based on the minimization of ITAE criterion, and the robust stability of the whole control system is discussed. Through the simulation, the proposed method can provide a better decoupling, better robustness and immunity for the compression refrigeration system. Moreover, it saves about 0.6% energy.
LI Donghui,GAO Feng
. Improved Smith Predictive Decoupling Control Based on
Disturbance Observer for Compression Refrigeration System[J]. Journal of Shanghai Jiaotong University, 2019
, 53(5)
: 593
-599
.
DOI: 10.16183/j.cnki.jsjtu.2019.05.012
[1]RADHAKISHNAN N, SU Y,SU R, et al. Token based scheduling for energy management in building HVAC systems[J]. Applied Energy, 2016, 173: 67-79.
[2]李兆博, 吴爱国, 何熠, 等. 制冷系统的改进Smith预估补偿和解耦控制[J]. 控制理论与应用, 2013, 30(1): 111-117.
LI Zhaobo, WU Aiguo, HE Yi, et al. Improved Smith predictive compensation and decoupling in refrigeration system[J]. Control Theory & Applications, 2013, 30(1): 111-117.
[3]CHEN W, CHEN Z, ZHU R, et al. Experimental investigation of a minimum stable superheat control system of an evaporator [J]. International Journal of Refrigeration, 2002, 25(8): 1137-1142.
[4]CHEN Y, TREADO S. Development of a simulation platform based on dynamic models for HVAC control analysis [J]. Energy and Buildings, 2014, 68(Part A): 376-386.
[5]PING W. Control design of the cold intermediary flow with the electronic expansion value [C]//The Japanese Freezing Academic Paper Collection. Tokyo: The Technology Paper Publisher, 1989: 4-11.
[6]SCHURT L C, HERMES C J L, NETO A T. Assessment of the controlling envelope of a model-based multivariable controller for vapor compression refrigeration systems[J]. Applied Thermal Engineering, 2010, 30(13): 1538-1546.
[7]薛洪武, 吴爱国, 董 娜. 制冷系统自抗扰解耦控制[J]. 西安交通大学学报, 2016, 50(9): 85-90.
XUE Hongwu, WU Aiguo, DONG Na. Active disturbance rejection decoupling control for refrigeration systems[J]. Journal of Xi’an Jiaotong University, 2016, 50(9): 85-90.
[8]YIN X, LI S. Energy efficient predictive control for vapor compression refrigeration cycle systems [J]. IEEE/CAA Journal of Automatica Sinica, 2018, 5(5): 953-960.
[9]赵东亚, 邹涛, 王治平. Smith 预估控制研究进展[J]. 化工进展, 2010, 29(8): 1406-1410.
ZHAO Dongya, ZOU Tao, WANG Zhiping. Progress in study of Smith-predictor controller[J]. Chemical Industry and Engineering Progress, 2010, 29(8): 1406-1410.
[10]翟文鹏, 吴爱国, 由玉文, 等. 制冷系统的广义预测控制方法研究[J]. 制冷技术, 2012, 40(2): 28-33.
ZHAI Wenpeng, WU Aiguo, YOU Yuwen, et al. Dynamic modeling of vapor-compression refrigeration system with a high pressure receiver[J]. Refrigeration, 2012, 40(2): 28-33.
[11]薛定宇. 反馈控制系统设计与分析——MATLAB语言应用[M]. 北京: 清华大学出版社, 2000.
XUE Dingyu. Design and analysis of feedback control system—Application of MATLAB language[M]. Beijing: Tsinghua University Press, 2000.
[12]白建波, 郑宇, 苗国厂. 暖通空调系统基于SMITH预估自校正控制算法[J]. 化工学报, 2012, 63(S2): 100-105.
BAI Jianbo, ZHENG Yu, MIAO Guochang. Self-tuning control algorithm with SMITH predictor for HVAC systems[J]. CIESC Journal, 2012, 63(S2): 100-105.
[13]刘康志, 姚郁. 线性鲁棒控制[M]. 北京: 科学出版社, 2013.
LIU Kangzhi, YAO Yu. Linear robust control[M]. Beijing: Science Press, 2013.
[14]张井岗, 刘志远, 陈志梅, 等. 时滞系统的二自由度控制[J]. 信息与控制, 2002, 31(4): 325-328.
ZHANG Jinggang, LIU Zhiyuan, CHEN Zhimei, et al. Two-degree-of-freedom control for time-delay system[J]. Information and Control, 2002, 31(4): 325-328.
[15]王丽君, 童朝南, 李 擎, 等. 实用自抗扰控制在大时滞厚度自动监控系统中的应用[J]. 控制理论与应用, 2012, 29(3): 368-374.
WANG Lijun, TONG Chaonan, LI Qing, et al. Practical active disturbance rejection solution for monitoring automatic gauge control system with large time-delay [J]. Control Theory & Applications, 2012, 29(3): 368-374.