In order to investigate the multi physics coupling characteristics in the recoil process of magnetorheological (MR) damper, an independent three-stage MR damper of double rod was designed. Magnetorheological gel (MRG) based on silicone was prepared and the steady-state shear test was carried out for obtaining the consistency coefficient and the non-Newtonian index of the Herschel-Bulkley model. MRG-70 was applied to the damper, and the motion analysis of recoil part was carried out by combining with the law of chancing of the bore resultant force for a certain type fixed artillery. The multiple physical fields of damper was analysed and calculated. The results show that Poiseuille pressure flow loss and Couette viscous flow loss are the main and controllable parts of the damper. The temperature of each pole corresponds to a different peak value at different times, and the temperature distribution was obviously nonlinear and time-variable. The pressure distribution and the pressure drop on the central axial surface of the damping channel are nonlinear and time-variable, the dynamic viscosity of the central axial surface of the effective damping channel is also obviously nonlinear and time-variable, and varies sharply at each pole, and the peak value fluctuates with the position.
ZHANG Guang,WANG Huixing,OUYANG Qing,WANG Jiong
. Thermal and Fluid Coupling Field Analysis of
MR Damper for Gun Recoil[J]. Journal of Shanghai Jiaotong University, 2019
, 53(4)
: 504
-512
.
DOI: 10.16183/j.cnki.jsjtu.2019.04.016
[1]XU Y G, GONG X L, XUAN S H. Soft magnetorheological polymer gels with controllable rheological properties[J]. Smart Materials and Structures, 2013, 22(7): 075029.
[2]RAO P V, MANIPRAKASH S, SRINIVASAN S M, et al. Functional behavior of isotropic magnetorheological gels[J]. Smart Materials and Structures, 2010, 19(8): 085019.
[3]XU Y G, GONG X L, XUAN S H, et al. A high-performance magnetorheological material: Preparation, characterization and magnetic-mechanic coupling properties[J]. Soft Matter, 2011, 7(11): 5246-5254.
[4]NGATU G T, WERELEY N M. Viscometric and sedimentation characterization of bidisperse magnetorheological fluids[J]. IEEE Transactions on Magnetics, 2007, 43(6): 2474-2476.
[5]刘韦, 罗世辉, 马卫华, 等. 高速动车组胶泥缓冲器特性分析[J]. 内燃机车, 2012, 8: 7-12.
LIU Wei, LUO Shihui, MA Weihua, et al. Characteristics analysis of high speed EMU damper[J]. Internal combustion engine, 2012, 8: 7-12.
[6]张广, 汪辉兴, 欧阳青, 等. 硅树脂基磁流变胶流变特性研究及Herschel-Bulkley模型参数识别[J]. 湖南大学学报(自然科学版), 2018, 45(6): 62-71.
ZHANG Guang, WANG Huixing, OUYANG Qing, et al. Study on the rheological properties of magnetorheological gel based on silicone and parameter identification of Herschel-Bulkley model [J]. Journal of Hunan University (Natural Sciences), 2018, 45(6): 62-71.
[7]胡红生, 王炅, 李延成. 火炮磁流变后坐阻尼器的设计与磁路分析[J]. 弹道学报, 2009, 21(2): 78-82.
HU Hongsheng, WANG Jiong, LI Yancheng. Design and magnetic analysis of a gun recoil magneto-rheological damper [J]. Journal of Ballistics, 2009, 21(2): 78-82.
[8]胡红生, 王炅, 蒋学争, 等. 火炮磁流变后坐阻尼器的设计与可控性分析[J]. 振动与冲击, 2010, 29(2): 184-188.
HU Hongsheng, WANG Jiong, JIANG Xuezheng, et al. Design and controllability analysis of a gun magnetorheological recoil damper[J]. Journal of Vibration and Shock, 2010, 29(2): 184-188.
[9]OLIVEIRA K F, CESAR M B, GONCALVES J. Fuzzy based control of a vehicle suspension system using a MR damper[C]//GARRIDO P, SOARES F, MOREIRA A. Controlo 2016. Cham, Switzerland: Springer International Publishing, 2016: 571-581.
[10]CHOI Y T, WERELEY N M. Vibration control of a landing gear system featuring electrorheological/magnetorheological fluids[J]. Journal of Aircraft, 2003, 40(3): 432-439.
[11]马彦晋. 弹性胶泥缓冲器的研究及在火炮上的应用[D]. 太原: 中北大学, 2015.
MA Yanjin. The research on elastic clay buffer and applied to the artillery[D]. Taiyuan: North University of China, 2015.
[12]AHMADIAN M, POYNOR J C. An evaluation of magneto rheological dampers for controlling gun recoil dynamics[J]. Shock and Vibration, 2001, 8(3/4): 147-155.
[13]欧阳青, 李赵春, 郑佳佳, 等. 多阶并联式磁流变缓冲器可控性分析[J]. 浙江大学学报 (工学版), 2017, 51(5): 961-968.
OUYANG Qing, LI Zhaochun, ZHENG Jiajia, et al. Controllability characteristics of magnetorheological damper with multi-stage parallel coil under impact load [J]. Journal of Zhejiang University (Engineering Science), 2017, 51 (5): 961-968.
[14]OUYANG Q, ZHENG J J, LI Z C, et al. Controllability analysis and testing of a novel magnetorheological absorber for field gun recoil mitigation[J]. Smart Materials and Structures, 2016, 25(11): 115041.
[15]ZHANG G, WANG H X, WANG J. Development and dynamic performance test of magnetorheological material for recoil of gun[J]. Applied Physics A, 2018, 124(11): 781.
[16]BAJKOWSKI M, BAJKOWSKI J M. Design of the magnetorheological damper for the recoil damping of the special object 7.62 mm calibre[J]. Machine Dynamics Research, 2012, 36(1): 15-23.
[17]BAJKOWSKI M, MAKUCH A, LINDEMNN Z. Determining parameters of recoil reduction system with spring and magnetorheological damper intended for special object[J]. Machine Dynamics Research, 2014, 38(3): 87-96.
[18]SINGH H J, WERELEY N M. Optimal control of gun recoil in direct fire using magnetorheological absorbers[J]. Smart Materials and Structures, 2014, 23(5): 055009.
[19]AKIWATE D C, GAWADE S S. Design and performance analysis of smart fluid damper for gun recoil system[J]. International Journal of Advanced Mechanical Engineering, 2014, 4(5): 543-550.
[20]XU Y G, GONG X L, XUAN S H. Soft magnetorheological polymer gels with controllable rheological properties[J]. Smart Materials and Structures, 2013, 22(7): 075029.
[21]ZUBIETA M, ECEOLAZA S, ELEJABARRIETA M J, et al. Magnetorheological fluids: Characterization and modeling of magnetization[J]. Smart Materials and Structures, 2009, 18(9): 095019.