Coupled Sound Field Calculating Method for Ship Underwater Noise Excited by Multiple Categories of Vibration and Sound Sources

Expand
  • State Key Laboratory of Ocean Engineering; Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai Jiao Tong University, Shanghai 200240, China

Online published: 2019-02-28

Abstract

Aiming at a frigate model based on the DTMB 5415 hull form, a coupled sound field calculating method for ship underwater radiation noise in low-middle frequencies was discussed by considering three typical categories of vibration and sound sources, mechanical, propeller and hydraulic noise. A vibroacoustic coupling FEM-IBEM (the finite element method-indirect boundary element method) model for the frigate was established, and the front 40000 order modes were calculated as the modal basis for the acoustic response. This study then calculated the acoustic radiated power level in 0-500Hz and analyzed directional properties and spectral characteristics for every noise component, and it compared the differences between the direct superposition and the coupled sound field calculating methods. The research shows that the physical model of the coupled method is more exact and efficient, and it is a preferred method for ship underwater radiation noise numerical prediction in low-middle frequencies excited by multiple categories of vibration and sound sources.

Cite this article

LI Qing,YU Han,YANG Deqing . Coupled Sound Field Calculating Method for Ship Underwater Noise Excited by Multiple Categories of Vibration and Sound Sources[J]. Journal of Shanghai Jiaotong University, 2019 , 53(2) : 161 -169 . DOI: 10.16183/j.cnki.jsjtu.2019.02.006

References

[1]王之程, 陈宗岐, 于沨, 等. 舰船噪声测量与分析[M]. 北京: 国防工业出版社, 2004: 3-5. WANG Zhicheng, CHEN Zongqi, YU Feng, et al. Warship noise measuring and analyzing [M]. Beijing: National Defense Industry Press, 2004: 3-5. [2]俞孟萨, 吴有生, 庞业珍. 国外舰船水动力噪声研究进展概述[J]. 船舶力学, 2007, 11(1): 152-158. YU Mengsa, WU Yousheng, PANG Yezhen. A review of progress for hydrodynamic noise of ships [J]. Journal of Ship Mechanics, 2007, 11(1): 152-158. [3]李清, 杨德庆, 郁扬. 舰船低频水下辐射噪声数值计算方法对比研究[J]. 中国造船, 2017, 58(3): 114-127. LI Qing, YANG Deqing, YU Yang. Comparative study on numerical methods for underwater low-frequency radiation noise of ship [J]. Shipbuilding of China, 2017, 58(3): 114-127. [4]邹春平, 陈端石, 华宏星. 船舶水下辐射噪声特性研究[J]. 船舶力学, 2004, 8(1): 113-124. ZOU Chunping, CHEN Duanshi, HUA Hongxing. Study on characteristics of ship underwater radiation noise [J]. Journal of Ship Mechanics, 2004, 8(1): 113-124. [5]ZHENG H, LIU G R, TAO J S, et al. FEM/BEM analysis of diesel piston-slap induced ship hull vibration and underwater noise [J]. Applied Acoustics, 2001, 62(4): 341-358. [6]MERZ S, KINNS R, KESSISSOGLOU N. Structu-ral and acoustic responses of a submarine hull due to propeller forces [J]. Journal of Sound and Vibration, 2009, 325(1/2): 266-286. [7]杨琼方, 王永生, 张明敏. 舰艇螺旋桨水下噪声预测[J]. 船舶力学, 2011, 15(4): 435-442. YANG Qiongfang, WANG Yongsheng, ZHANG Mingmin. Underwater noise prediction of ship and submarine propeller [J]. Journal of Ship Mechanics, 2011, 15(4): 435-442. [8]ZDEN M C, GRKAN A Y, ZDEN Y A, et al. Underwater radiated noise prediction for a submarine propeller in different flow conditions [J]. Ocean Engineering, 2016, 126: 488-500. [9]GRECO L, MUSCARI R, TESTA C, et al. Marine propellers performance and flow-field prediction by a free-wake panel method [J]. Journal of Hydrodyna-mics, 2014, 26(5): 780-795. [10]卢云涛, 张怀新, 潘徐杰. 全附体潜艇的流场和流噪声的数值模拟[J]. 振动与冲击, 2008, 27(9): 142-146. LU Yuntao, ZHANG Huaixin, PAN Xujie. Numerical simulation of flow-field and flow-noise of a fully appendage submarine [J]. Journal of Vibration and Shock, 2008, 27(9): 142-146. [11]江文成, 张怀新, 孟堃宇. 基于边界元理论求解水下潜艇流噪声的研究[J]. 水动力学研究与进展A辑, 2013, 28(4): 453-459. JIANG Wencheng, ZHANG Huaixin, MENG Kunyu. Research on the flow noise of underwater submarine based on boundary element method [J]. Chinese Journal of Hydrodynamics, 2013, 28(4): 453-459. [12]魏应三, 王永生. 基于声场精细积分算法的潜艇流激噪声预报[J]. 计算力学学报, 2012, 29(4): 574-581. WEI Yingsan, WANG Yongsheng. Flow-excited submarine structure acoustic prediction based on a refined integral algorithm [J]. Chinese Journal of Computational Mechanics, 2012, 29(4): 574-581. [13]马娟, 万德成. 典型标准水面船型阻力和黏性流场的计算[J]. 中国科学: 物理学 力学 天文学, 2011, 41(2): 178-193. MA Juan, WAN Decheng. A numerical study of resistance and viscous flow around typical benchmark surface ship hull [J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2011, 41(2): 178-193. [14]郑拯宇, 李人宪. 高速列车表面气动噪声偶极子声源分布数值分析[J]. 西南交通大学学报, 2011, 46(6): 996-1002. ZHENG Zhengyu, LI Renxian. Numerical analysis of aerodynamic dipole source on high-speed train surface [J]. Journal of Southwest Jiaotong University, 2011, 46(6): 996-1002. [15]刘伯胜, 雷家煜. 水声学原理[M]. 哈尔滨: 哈尔滨工程大学出版社, 2010: 4-6. LIU Bosheng, LEI Jiayu. Principles of underwater sound [M]. Harbin: Harbin Engineering University press, 2010: 4-6. [16]DURANT C, ROBERT G, FILLPPI P J T. Vibro-acoustic response of a thin cylindrical shell excited by a turbulent internal flow: Comparison between numerical prediction and experimentation [J]. Journal of Sound and Vibration, 2000, 229(5): 1115-1155. [17]钱晓南. 舰船螺旋桨噪声[M]. 上海: 上海交通大学出版社, 2011: 2-20. QIAN Xiaonan. Propeller noise of vessel [M]. Shanghai: Shanghai Jiao Tong University Press, 2011: 2-20.
Outlines

/