A square honeycomb-filled thin-wall composite structure is proposed, and the crashworthiness of honeycomb filled structure and corresponding unfilled (thin-walled empty tube) structures under 12 kinds of impact conditions are systematically studied by experimental research and numerical analysis. At the same time, numerical optimization design of honeycomb filled structure is carried out by combining Kriging approximation technique and small population genetic algorithm. The results show that under various impact conditions, the energy absorption of the honeycomb filled structure is higher than that of the thin-walled empty tube structure, and the impact angle and velocity have significant effects on the energy absorption performance of the honeycomb filled structure. At the same impact velocity, the energy absorption of the honeycomb filled structure decreases as the impact angle increases. At the same impact angle, the energy absorption of the filled structure increases as the impact velocity increases. The Kriging approximation technique and the small population genetic algorithm optimize the optimal parameter matching of the honeycomb filled structure obtained by optimizing the honeycomb filled structure, which can improve the energy absorption of the honeycomb filled structure.
[1]陈吉清, 周鑫美, 饶建强, 等. 汽车前纵梁薄壁结构碰撞吸能特性及其优化的研究[J]. 汽车工程, 2010, 32(6): 486-492.
CHEN Jiqing, ZHOU Xinmei, RAO Jianqiang, et al. A Research on the impact energy absorption characteristics and optimization of thin-walled structure of vehicle front rail [J]. Automotive Engineering, 2010, 32(6): 486-492.
[2]朱文波, 杨黎明, 余同希. 薄壁圆管轴向冲击下的动态特性研究[J]. 宁波大学学报(理工版), 2014, 27(2): 92-96.
ZHU Wenbo, YANG Liming, YU Tongxi. Study on dynamic properties of thin-walled circular tubes under axial compression [J]. Journal of Ningbo University (Natural Science & Engineering Edition), 2014, 27(2): 92-96.
[3]YIN H, WEN G, LIU Z, et al. Crashworthiness optimization design for foam-filled multi-cell thin-walled structures [J]. Thin-Walled Structures, 2014, 75: 8-17.
[4]EL-SAYED F K A, JONES R, BURGESS I W. A theoretical approach to the deformation of honeycomb based composite materials [J]. Composites, 1979, 10(4): 209-214.
[5]张新春, 刘颖, 李娜. 具有负泊松比效应蜂窝材料的面内冲击动力学性能[J]. 爆炸与冲击, 2012, 32(5): 475-482.
ZHANG Xinchun, LIU Ying, LI Na. In-plane dynamic crushing of honeycombs with negative Poisson’s ratio effects [J]. Explosion and Shock Waves, 2012, 32(5): 475-482.
[6]ZHANG X C, AN L Q, DING H M, et al. The influence of cell micro-structure on the in-plane dynamic crushing of honeycombs with negative Poisson’s ratio [J]. Journal of Sandwich Structures & Materials, 2015, 17(1): 26-55.
[7]ZHANG X C, AN L Q, DING H M. Dynamic crushing behavior and energy absorption of honeycombs with density gradient [J]. Journal of Sandwich Structures & Materials, 2014, 16(2): 125-147.
[8]刘颖, 何章权, 吴鹤翔, 等. 分层递变梯度蜂窝材料的面内冲击性能[J]. 爆炸与冲击, 2011, 31(3): 225-231.
LIU Ying, HE Zhangquan, WU Hexiang, et al. In-plane dynamic crushing of functionally layered metal honeycombs [J]. Explosion and Shock Waves, 2011, 31(3): 225-231.
[9]TAO Y, CHEN M J, CHEN H S, et al. Strain rate effect on the out-of-plane dynamic compressive beha-vior of metallic honeycombs: Experiment and theory [J]. Composite Structures, 2015, 132: 644-651.
[10]XU S, BEYNON J H, DONG R, et al. Experimental study of the out-of-plane dynamic compression of hexagonal honeycombs [J]. Composite Structures, 2012, 94(8): 2326-2336.
[11]KHAN M K, BAIG T, MIRZA S. Experimental investigation of in-plane and out-of-plane crushing of aluminum honeycomb [J]. Materials Science and Engineering A, 2012, 539(2): 135-142.
[12]SANTOSA S, WIERZBICKI T. Crash behavior of box columns filled with aluminum honeycomb or foam [J]. Computers & Structures, 1998, 68(4): 343-367.
[13]GUDEN M. Quasi-static axial crushing behavior of honeycomb-filled thin-walled aluminum tubes [J]. Open Materials Science Journal, 2011, 5(1): 184-193.
[14]ZAREI H R, KRGER M. Crashworthiness optimization of empty and filled aluminum crash boxes [J]. International Journal of Crashworthiness, 2007, 12(3): 255-264.
[15]闫晓刚, 张勇, 林继铭, 等. 新颖圆形多胞复合填充结构的耐撞性[J]. 复合材料学报, 2018, 35(8): 2166-2176.
YAN Xiaogang, ZHANG Yong, LIN Jiming, et al. Crashworthiness for novel circular multi-cell compo-site filling structures[J]. Acta Materiae Composite Sinica, 2018, 35(8): 2166-2176.
[16]张勇, 蔡检明, 赖雄鸣. 异面撞击载荷下金属蜂窝填充薄壁结构的动态力学性能[J]. 中国公路学报, 2015, 28(1): 120-126.
ZHANG Yong, CAI Jianming, LAI Xiongming. Dynamic mechanical behavior of metal honeycomb-filled thin-walled structures subjected to out-of-plane impact loading [J]. China Journal of Highway and Transport, 2015, 28(1): 120-126.
[17]文桂林, 孔祥正, 尹汉锋, 等. 泡沫填充夹芯墙多胞结构的耐撞性多目标优化设计[J]. 振动与冲击, 2015, 34(5): 115-121.
WEN Guilin, KONG Xiangzheng, YIN Hanfeng, et al. Multi-objective crashworthiness optimization design of foam-filled sandwich wall multi-cell structures [J]. Journal of Vibration and Shock, 2015, 34(5): 115-121.
[18]何乐新. 从汽车车身安全构件分析碰撞安全保护[J]. 汽车维修与保养, 2013(2): 77-79.
HE Lexin. Collision safety protection from the safety component analysis of car body [J]. Motor for Repair & Maintenance, 2013(2): 77-79.
[19]张冬冬, 郭勤涛. Kriging响应面代理模型在有限元模型确认中的应用[J]. 振动与冲击, 2013, 32(9): 187-191.
ZHANG Dongdong, GUO Qintao. Application of Kriging response surface in finite element model validation [J]. Journal of Vibration and Shock, 2013, 32(9): 187-191.
[20]MIN Z, CUI W C. Application of the optimal Latin hypercube design and radial basis function network to collaborative optimization [J]. Journal of Marine Science and Application, 2007, 6(3): 24-32.
[21]张勇, 林福泳. 铝泡沫填充薄壁结构耐撞可靠性优化设计[J]. 机械工程学报, 2011, 47(22): 93-99.
ZHANG Yong, LIN Fuyong. Crashworthiness reliability design optimization of aluminum foam filled thin-wall structures [J]. Journal of Mechanical Engineering, 2011, 47(22): 93-99.