Based on the tunneling case for Shanghai railway transportation line, undercrossing tunneling simulation was performed by using the DEM (discrete element method) software PFC2D. The instability mode, surface subsidence and support pressure ratio were investigated to analyze the coverage from existing tunnel to the instabilities of the shield tunnel face, and were compared with the monitoring of the surface subsidence, to discuss the universal law of the face collapse along the longitudinal excavation. The consequences of DEM simulation showed the instability mode was varied when the tunnel face was close to the existing tunnel before crossing, performing the expansion of the chimney, the discontinuity of the surface subsidence tank and the decrease of the limiting support pressure ratio. When the tunnel face passed through the existing tunnel, it had very little influence on the instability mode. The limiting support pressure ratio lied between 0.4 and 0.6 in both situations of single shield tunnel and undercrossing shield tunnel. And the ratios in the undercrossing were lower than the one in the single so that it was more difficult to collapse in the undercrossing. According to the comprehensive analysis of simulation results, the existing tunnel had a significant impact on the instability mode when the tunnel face was in the range of twice the tunnel diameter in front of the existing tunnel.
ZHANG Mengxi,ZHANG Zisheng,WANG Wei,Lü Yan,HAN Jiayao,JIN Qi
. Discrete Element Analysis for Instability of
Undercrossing Shield Tunnel Face[J]. Journal of Shanghai Jiaotong University, 2018
, 52(12)
: 1594
-1602
.
DOI: 10.16183/j.cnki.jsjtu.2018.12.008
[1]白海卫, 何海健, 李玲. 正交下穿施工对上部既有隧道安全的影响研究[J]. 地下空间与工程学报, 2014, 10(2): 434-440.
BAI Haiwei, HE Haijian, LI Ling. Study on longitudinal deformation and internal forces of upper existing metro tunnel caused by undercrossing tunneling[J]. Chinese Journal of Underground Space and Engineering, 2014, 10(2): 434-440.
[2]汪洋, 何川, 曾东洋, 等. 盾构隧道正交下穿施工对既有隧道影响的模型试验与数值模拟[J]. 铁道学报, 2010, 32(2): 79-85.
WANG Yang, HE Chuan, ZENG Dongyang, et al. Model test and numerical simulation of influence of perpendicular undercross shield tunnel construction on existing tunnel[J]. Journal of the China Railway Society, 2010, 32(2): 79-85.
[3]张治国, 张孟喜. 软土城区土压平衡盾构上下交叠穿越地铁隧道的变形预测及施工控制[J]. 岩石力学与工程学报, 2013, 32(S2): 3428-3439.
ZHANG Zhiguo, ZHANG Mengxi. Deformation prediction of subway tunnel induced by EPB shield in soft clay during above and down overlapped traversing process and its construction control[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(S2): 3428-3439.
[4]MAYNAR M J, RODRIGUEZ L E. Discrete nume-rical model for analysis of earth pressure balance tunnel excavation[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2005, 131(10): 1234-1242.
[5]缪林昌, 王正兴, 石文博. 砂土盾构隧道掘进开挖面稳定理论与颗粒流模拟研究[J]. 岩土工程学报, 2015, 37(1): 98-104.
MIAO Linchang, WANG Zhengxing, SHI Wenbo. Theoretical and numerical simulations of face stability around shield tunnels in sand[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 98-104.
[6]孙潇昊, 缪林昌, 林海山. 不同埋深盾构隧道开挖面稳定问题数值模拟[J]. 东南大学学报(自然科学版), 2017, 47(1): 164-169.
SUN Xiaohao, MIAO Linchang, LIN Haishan. Numerical simulation research on excavation face stability of different depths of shield tunnel[J]. Journal of Southeast University (Natural Science Edition), 2017, 47(1): 164-169.
[7]朱伟, 钟小春, 加瑞. 盾构隧道垂直土压力松动效应的颗粒流模拟[J]. 岩土工程学报, 2008, 30(5): 750-754.
ZHU Wei, ZHONG Xiaochun, JIA Rui. Simulation on relaxation effect of vertical earth pressure for shield tunnels by particle flow code[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(5): 750-754.
[8]ZHANG Z X, HU X Y, SCOTT K D. A discrete numerical approach for modeling face stability in slurry shield tunnelling in soft soils[J]. Computers and Geotechnics, 2011, 38(1): 94-104.
[9]汤旅军, 陈仁朋, 尹鑫晟, 等. 密实砂土地层盾构隧道开挖面失稳离心模型试验研究[J]. 岩土工程学报, 2013, 35(10): 1830-1838.
TANG Lüjun, CHEN Renpeng, YIN Xinsheng, et al. Centrifugal model tests on face stability of shield tunnels in dense sand[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1830-1838.