Interpolation Prediction and Extrapolation Prediction of Non-Gaussian Spatial Wind Pressure Using LSSVM with Wavelet Kernel Function

Expand
  • Department of Civil Engineering, Shanghai University, Shanghai 200444, China

Abstract

The performance of support vector machine depends on the selection of kernel functions and kernel parameters. The Mexican Hat wavelet kernel function is constructed based on the wavelet analysis theory which could satisfy the Mercer conditions. Further, the Mexican Hat wavelet kernel function and the B-spline kernel are combined with the LSSVM respectively and accordingly MW-LSSVM and BS-LSSVM are proposed. Subsequently, optimizations for penalty parameters and kernel parameters are conducted using particle swarm optimization (PSO) and thus the PSO-MW-LSSVM and PSO-BS-LSSVM algorithms are proposed for spatial wind pressure prediction. The numerical analysis shows that the proposed method not only significantly outperforms the conventional RBF-LSSVM and BS-LSSVM in forecasting accuracy and generalization ability, but also has great engineering application prospects due to its stability.

Cite this article

LI Chunxiang,YIN Xiao . Interpolation Prediction and Extrapolation Prediction of Non-Gaussian Spatial Wind Pressure Using LSSVM with Wavelet Kernel Function[J]. Journal of Shanghai Jiaotong University, 2018 , 52(11) : 1516 -1523 . DOI: 10.16183/j.cnki.jsjtu.2018.11.014

References

[1]孙旭峰, BITSUAMLAK G T, 胡超. 屋盖结构脉动风压非高斯特性分析的极限流线方法[J]. 振动与冲击, 2015, 34(8): 157-162. SUN Xufeng, BITSUAMLAK G T, HU Chao. Li-miting streamline method for analysis of non-Gaussian property of roof structures’ fluctuating wind pressure[J]. Journal of Vibration and Shock, 2015, 34(8): 157-162. [2]DING J, CHEN X Z. Assessment of methods for extreme value analysis of non-Gaussian wind effects with short-term time history samples[J]. Engineering Structures, 2014, 80: 75-88. [3]QU L, ZHOU H. The multi-class SVM is applied in transformer fault diagnosis[C]//International Symposium on Distributed Computing and Applications for Business Engineering and Science. Paris: IEEE, 2016: 477-480. [4]YAN X, CHOWDHURY N A. Mid-term electricity market clearing price forecasting: A hybrid LSSVM and ARMAX approach[J]. International Journal of Electrical Power & Energy Systems, 2013, 53(1): 20-26. [5]SU J, WANG X, LIANG Y, et al. GA-based support vector machine model for the prediction of monthly reservoir storage[J]. Journal of Hydrologic Engineering, 2013, 19(7): 1430-1437. [6]AHMADI M A, BAHADORI A. A LSSVM approach for determining well placement and conning phenomena in horizontal wells[J]. Fuel, 2015, 153: 276-283. [7]SHANG F H, MIAO X J, WANG Z Y, et al. Automatic identifying algorithm of water-flooded zone based on B-SVM[C]//International Conference on Machine Learning and Cybernetics. Dalian: IEEE, 2006: 4035-4039. [8]王春枝, 张会丽, 叶志伟. 基于混沌粒子群算法和小波SVM的P2P流量识别方法[J]. 计算机科学, 2015, 42(10): 117-121. WANG Chunzhi, ZHANG Huili, YE Zhiwei. Peer-to-peer traffic identification method based on chaos particle swarm algorithm and wavelet SVM[J]. Computer Science, 2015, 42(10): 117-121. [9]迟恩楠, 李春祥. 基于优化组合核和Morlet小波核的LSSVM脉动风速预测方法[J]. 振动与冲击, 2016, 35 (18): 52-57. CHI Ennan, LI Chunxiang. Forecast of fluctuating wind velocity using LSSVM with optimized combination kernel and Morlet wavelet kernel[J]. Journal of Vibration and Shock, 2016, 35 (18): 52-57. [10]LIU Z, CUI Y, LI W. A classification method for complex power quality disturbances using EEMD and rank wavelet SVM[J]. IEEE Transactions on Smart Grid, 2017, 6(4): 1678-1685. [11]ZHOU J Y, JING S, GONG L. Fine tuning support vector machines for short-term wind speed forecasting[J]. Energy Conversion and Management, 2011, 52(4): 1990-1998. [12]SUBASI A. Classification of EMG signals using PSO optimized SVM for diagnosis of neuromuscular dis-orders[J]. Computers in Biology & Medicine, 2013, 43(5): 576-586. [13]SELAKOV A, MELLON S, BEKUT D. Hybrid PSO-SVM method for short-term load forecasting during periods with significant temperature variations in city of Burbank[J]. Applied Soft Computing, 2014, 16(3): 80-88. [14]李锦华, 吴春鹏, 陈水生. 矩形结构非高斯风荷载特性研究[J]. 振动、测试与诊断, 2014, 34(5): 951-959. LI Jinhua, WU Chunpeng, CHEN Shuisheng. Cha-racteristics of non-gaussian wind pressures on rectangular structure[J]. Journal of Vibration, Measurement & Diagnosis, 2014, 34(5): 951-959.
Options
Outlines

/