Modeling and Digital Simulation of DC Step-Up Collection System for Large-Scale Photovoltaic Power Plants

Expand
  • 1. Electric Power Research Institute of Yunnan Power Grid Co., Ltd., Kunming 650217,China; 2. School of Electrical Engineering, Chongqing University, Chongqing 400044, China; 3. School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

This paper focuses on large-scale photovoltaic power plants and its collection system. By analyzing the advantages and disadvantages of various connection methods in photovoltaic power plants, a new DC step-up collection system topology for large-scale photovoltaic power plants is proposed. Based on modular multilevel converter (MMC), the topology and control of high-ratio DC/DC and DC/AC converters are addressed. The DC step-up collection system is modeled in RT-LAB. According to the principle of DC faults in the model, the simulation results are analyzed and the fault characteristic is concluded. This paper is useful to explore the new design of the DC step-up collection system and the control of the multiple converters based on the MMC.

Cite this article

XI Xinze,HUANG Wentao,TAI Nengling . Modeling and Digital Simulation of DC Step-Up Collection System for Large-Scale Photovoltaic Power Plants[J]. Journal of Shanghai Jiaotong University, 2018 , 52(10) : 1178 -1188 . DOI: 10.16183/j.cnki.jsjtu.2018.10.005

References

[1]丁明, 王伟胜, 王秀丽, 等. 大规模光伏发电对电力系统影响综述[J]. 中国电机工程学报, 2014, 34(1): 1-14. DING Ming, WANG Weisheng, WANG Xiuli, et al. Review of the impact of large-scale photovoltaic generation on power systems[J]. Proceedings of the CSEE, 2014, 34(1): 1-14. [2]赵争鸣, 雷一, 贺凡波, 等. 大容量并网光伏电站技术综述[J]. 电力系统自动化, 2011, 35(12): 101-107. ZHAO Zhengming, LEI Yi, HE Fanbo, et al. Technical overview of large capacity grid-connected photovoltaic power plants[J]. Automation of Electric Power Systems, 2011, 35(12): 101-107. [3]BREYER C, BOGDANOV D, GULAGI A, et al. On the role of solar photovoltaics in global energy transition scenarios[J]. Progress in Photovoltaics: Research and Applications, 2017, 25(8): 727-745. [4]蔡文迪, 朱淼, 李修一, 等. 基于阻抗源变换器的光伏直流升压汇集系统[J]. 电力系统自动化, 2017, 15: 017. CAI Wendi, ZHU Miao, LI Xiuyi, et al. Photovoltaic DC boost aggregation system based on impedance source converter[J]. Automation of Electric Power Systems, 2017, 15: 017. [5]张建坡, 赵成勇, 孙一莹, 等. 基于电压源换流器型直流输电拓扑结构和调制策略[J]. 电网技术, 2013, 37(6): 1732-1738. ZHANG Jianpo, ZHAO Chengyong, SUN Yiying, et al. Topology and modulation strategy of DC transmission based on voltage source converter[J]. Power System Technology, 2013, 37(6): 1732-1738. [6]蒋冠前, 李志勇, 杨慧霞, 等.柔性直流输电系统拓扑结构研究综述[J]. 电力系统保护与控制, 2015, 43(15): 145-153. JIANG Guanqian, LI Zhiyong, YANG Huixia, et al. Overview of topology research of flexible HVDC transmission system[J]. Power System Protection and Control, 2015, 43(15): 145-153. [7]马为民, 吴方劼, 杨一鸣, 等. 柔性直流输电技术的现状及应用前景分析[J]. 高电压技术, 2014, 40(8): 2429-2439. MA Weimin, WU Fangjie, YANG Yiming, et al. Current status and application prospect of flexible DC transmission technology[J]. High Voltage Engineering, 2014, 40(08): 2429-2439 [8]汤广福, 贺之渊, 庞辉. 柔性直流输电工程技术研究、应用及发展[J]. 电力系统自动化, 2013, 37(15): 3-14. TANG Guangfu, HE Zhiyuan, PANG Hui. Research, application and development of flexible DC transmission engineering technology[J]. Automation of Electric Power Systems, 2013, 37(15): 3-14. [9]王金玉. 基于MMC的柔性直流输电稳态分析方法及控制策略研究[D]. 济南: 山东大学, 2017. WANG Jinyu. Research on steady state analysis method and control strategy of flexible DC transmission based on MMC[D]. Jinan: Shandong University, 2017. [10]梁营玉. 模块化多电平换流器型直流输电系统若干控制技术研究[D]. 北京, 华北电力大学, 2016. LIANG Yingyu. Research on several control techniques of modular multilevel converter DC transmission system[D]. Beijing: North China Electric Power University, 2016. [11]廖武. 模块化多电平变换器(MMC)运行与控制若干关键技术研究[D]. 长沙: 湖南大学, 2016. LIAO Wu. Research on several key technologies of modular multilevel converter (MMC) operation and control [D]. Changsha: Hunan University, 2016. [12]索之闻. 基于MMC的高压大功率DC/DC变换器拓扑与控制策略研究[D]. 北京, 华北电力大学, 2017. SUO Zhiwen. Research on topology and control strategy of high voltage and high power DC/DC converter based on MMC[D]. Beijing: North China Electric Power University, 2017. [13]刘意, 李燕珊, 梁博烨. 基于MMC的DC/DC变换器的研究综述[J]. 自动化技术与应用, 2017, 36(8): 1-7. LIU Yi, LI Yanshan, LIANG Boye. Review of MDC-based DC/DC converters[J]. Automation Technology and Application, 2017, 36(8): 1-7. [14]索之闻, 李庚银, 迟永宁, 等.一种基于子模块混合型模块化多电平换流器的高压大功率DC/DC变换器[J]. 中国电机工程学报, 2015, 35(14): 3577-3585. SUO Zhiwen, LI Gengyin, CHI Yongning, et al. A high voltage and high power DC/DC converter based on submodule hybrid modular multilevel converter[J]. Proceedings of the CSEE, 2015, 35(14): 3577-3585. [15]PANDIARAJAN N, MUTHU R. Mathematical modeling of photovoltaic module with simulink[M]. Newport Beach: IEEE Press, 2011: 258-263. [16]张桦, 谢开贵. 基于PSCAD的光伏电站仿真与分析[J]. 电网技术, 2014, 38(7): 1848-1852. ZHANG Hua, XIE Kaigui. Simulation and analysis of photovoltaic power plant based on PSCAD[J]. Power System Technology, 2014, 38(7): 1848-1852.
Options
Outlines

/