Review of Technology and Development in the Power Applications Based on Second-Generation High-Temperature Superconductors

Expand
  • School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

With the high upper critical magnetic field, high operating temperature and high critical current density, the second-generation high-temperature superconducting materials represented by Yttrium-Barium-Copper-Oxide have drawn worldwide attention since they were discovered in the last century. In recent years, with the gradual maturity of superconducting strip fabrication technology and the continuous exploration of application technology, the application of second-generation high-temperature superconducting materials in various industries is moving from laboratory to practical application. This paper will combine the main trend of applied superconductivity and concentrate on introducing the main progress of power applications based on second-generation high-temperature superconducting materials.

Cite this article

JIN Zhijian,HONG Zhiyong,ZHAO Yue,LI Zhuyong,HUANG Zhen,WU Wei,ZHANG Zhiwei,LI Xiaofen,YAO Linpeng,SHENG Jie . Review of Technology and Development in the Power Applications Based on Second-Generation High-Temperature Superconductors[J]. Journal of Shanghai Jiaotong University, 2018 , 52(10) : 1155 -1165 . DOI: 10.16183/j.cnki.jsjtu.2018.10.003

References

[1]GUREVICH A. To use or not to use cool superconductors? [J]. Nature Materials, 2011, 10: 255-259. [2]Office of Electric Transmission and Distribution, United States. Grid 2030: A national vision for electricity’s second 100 years [EB/OL]. (2003-04-02) [2018-04-25]. https:∥www.energy.gov/sites/prod/files/oeprod/DocumentsandMedia/Electric_Vision_Document.pdf. [3]YASUDA K, ICHINOSE A, KIMURA A, et al. Research & development of superconducting fault current limiter in Japan [J]. IEEE Transactions on Applied Superconductivity, 2005, 15(2): 1978-1981. [4]JO Y S, RYU K S, PARK M. 1st phase results and future plan of DAPAS program [J]. IEEE Transactions on Applied Superconductivity, 2006, 16(2): 678-682. [5]VERHAEGE T, HERRMANN P F, BOCK J, et al. European project on a self-limiting superconducting power link [J]. Superconductor Science and Technology, 2000, 13(5): 488-492. [6]林良真, 肖立业. 超导电力技术新进展及其未来发展的思考[J]. 物理, 2006, 35(6): 491-496. LIN Liangzhen, XIAO Liye. Recent advance and future in development of high temperature superconducting power technology [J]. Physics, 2006, 35(6): 491-496. [7]许惠英. 我国 “十二五” 能源发展规划透视[J]. 中国科技产业, 2010(8): 82-83. XU Huiying. China’s “12th five-year” energy deve-lopment plan from a perspective [J]. Science & Technology Industry of China, 2010(8): 82-83. [8]赵跃, 张智巍, 朱佳敏, 等. 面向实用化的第二代高温超导带材研究进展[J]. 电工电能新技术, 2017, 36(10), 69-75. ZHAO Yue, ZHANG Zhiwei, ZHU Jiamin, et al. Progress of second generation high temperature superconductors for practical applications [J]. Advanced Technology of Electrical Engineering and Energy, 2017, 36(10), 69-75. [9]朱佳敏, 陈思侃, 洪智勇.一种超导带材封装装置: 2017104160268[P]. 2017-06-05 [2018-04-25]. ZHU Jiamin, CHEN Sikan, HONG Zhiyong. A lamination setup of superconducting tapes: 2017104160268 [P]. 2017-06-05 [2018-04-25]. [10]NEUMUELLER H W, SCHMIDT W, KRAEMER H P, et al. Development of resistive fault current limiters based on YBCO coated conductors [J]. IEEE Transactions on Applied Superconductivity, 2009, 19(3): 1950-1955. [11]MARTINI L, NOE M, PASCAL T, et al. The ECCOFLOW project: Design and simulation results of a superconducting fault current limiter for operation in electricity networks [C]∥21st International Conference on Electricity Distribution. Franckfort, Germany: IET, 2011: 1-4. [12]HOBL A, KRMER S, ELSCHNER S, et al. Superconducting fault current limiters: A new tool for the “grid of the future” [J]. CIRED 2012 Workshop: Integration of Renewables into the Distribution Grid. Lisbon, Portugal: IET, 2012: 1-4. [13]KLAUS D, MCWILLIAM J, HELM J, et al. Superconducting fault current limiters—UK network trials live and limiting [C]∥22nd International Conference and Exhibition on Electricity Distribution. Stockholm, Sweden: IET, 2013: 0285. [14]XIN Y, GONG W Z, NIU X Y, et al. Manufacturing and test of a 35 kV/90 MVA saturated iron-core type superconductive fault current limiter for live-grid operation [J]. IEEE Transactions on Applied Superconductivity, 2009, 19(3): 1934-1937. [15]XIN Y, GONG W Z, HONG H, et al. Development of a 220 kV/300 MVA superconductive fault current limiter [J]. Superconductor Science and Technology, 2012, 25(10): 105011. [16]HONG Z, SHENG J, YAO L, et al. The structure, performance and recovery time of a 10 kV resistive type superconducting fault current limiter [J]. IEEE Transactions on Applied Superconductivity, 2013, 23(3): 5601304. [17]LI B, LI C, GUO F, et al. Coordination of super-conductive fault current limiters with zero-sequence current protection of transmission lines [J]. IEEE Transactions on Applied Superconductivity, 2014, 24(5): 5602105. [18]GONG W Z, XIN Y, HONG H, et al. Plenary talk—Practical HTS FCL development—Updates of innopower’s SFCL R&D projects [C]∥International Conference on Applied Superconductivity and Electromagnetic Devices. Beijing, China: IEEE, 2013: 256-256. [19]ZHANG Z, SUN Q, XIAO L, et al. Research on fast fault identification method of 10.5 kV/1.5 kA superconducting fault current limiter [J]. Cryogenics, 2014, 63: 199-203. [20]MARTINI L, BOCCHI M, DALESSANDRO R, et al. Electrical testing of 1 MVA-class three-phase superconducting fault current limiter prototypes [C]∥International Conference on Electricity Distribution. Vienna, Austria: IET, 2007: 0578. [21]NOE M, SCHACHERER C. Status and outlook on superconducting fault current limiter development in Europe [J]. Proceedings of of International Symposium on EcoTopia Science. Nagoya, Japan: Nagoya University, 2007: 529-534. [22]AHN M C, PARK D K, YANG S E, et al. A study on the design of the stabilizer of coated conductor for applying to SFCL [J]. IEEE Transactions on Applied Superconductivity, 2007, 17(2): 1855-1858. [23]YAZAWA T, KOYANAGI K, TAKAHASHI M, et al. Design and experimental results of three-phase superconducting fault current limiter using highly-resistive YBCO tapes [J]. IEEE Transactions on Applied Superconductivity, 2009, 19(3): 1956-1959. [24]KLAUS D, WILSON A, DOMMERQUE R, et al. Fault limiting technology trials in distribution networks [C]∥International Conference on Electricity Distribution. Prague, Czech Republic: IET, 2009: 0140. [25]DUCKWORTH R C, ZHANG Y F, HA T, et al. Dynamic resistance of YBCO-coated conductors in applied AC fields with DC transport currents and DC background fields [J]. IEEE Transactions on Applied Superconductivity, 2011, 21(3): 3251-3256. [26]PRUSSEIT W. Superconductor Industry in Germany: Status and perspectives [C]∥IEEE/CSC & ESAS European Superconductivity News Forum. [s.n.]: IEEE, 2008: 1-21. [27]JEONG K W, MOON B S, PARK S K. Status and future direction of HTS power application in KEPCO [C]∥CIGRE-AORC Technical Meeting. Chiang Mai, Thailand: CIGRE, 2011: PL18. [28]MARTINI L, BOCCHI M, ASCADE M, et al. Development, testing and installation of a superconducting fault current limiter for medium voltage distribution networks [J]. Physics Procedia, 2012, 36: 914-920. [29]MARTINI L, BOCCHI M, BRAMBILLA R, et al. Design and development of 15 MVA class fault current limiter for distribution systems [J]. IEEE Transactions on Applied Superconductivity, 2009, 19(3): 1855-1858. [30]FABBRI M, FORZAN M, LUPI S, et al. Experimental and numerical analysis of DC induction heating of aluminum billets [J]. IEEE Transactions on Magnetics, 2009, 45(1): 192-200. [31]CHOI J, KIM K, PARK M, et al. Practical design and operating characteristic analysis of a 10 kW HTS DC induction heating machine [J]. Physica C: Superconductivity and Its Applications, 2014, 504: 120-126. [32]RUNDE M, MAGNUSSON N. Induction heating of aluminium billets using superconducting coils [J]. Physica C: Superconductivity, 2002, 372/373/374/375/376: 1339-1341. [33]RUNDE M, MAGNUSSON N, FULBIER C, et al. Commercial induction heaters with high-temperature superconductor coils [J]. IEEE Transactions on Applied Superconductivity, 2011, 21(3): 1379-1383. [34]FABBRI M, MORANDI A, NEGRINI F. Temperature distribution in aluminum billets heated by rotation in static magnetic field produced by superconducting magnets [J]. COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2005, 24(1): 281-290. [35]ZLOBINA M, NACKE B, NIKANOROV A. Adaptive induction system for heating of aluminium billet by rotation in DC magnetic field [C]∥Proceedings of the International Scientific Colloquium Modelling for Electromagnetic Processing. Hannover, Germany: Leibniz Unversity of Hannover, 2008: 349-354. [36]ZUEGER H. 630 kVA high temperature superconducting transformer [J]. Cryogenics, 1998, 38(11): 1169-1172. [37]FUNAKI K, IWAKUMA M, TAKEO M, et al. Preliminary tests of a 500 kVA-class oxide superconducting transformer cooled by subcooled nitrogen [J]. IEEE Transactions on Applied Superconductivity, 1997, 7(2): 824-827. [38]MEHTA S. US effort on HTS power transformers [J]. Physica C: Superconductivity and Its Applications, 2011, 471(21/22): 1364-1366. [39]BOHNO T, TOMIOKA A, IMAIZUMI M, et al. Development of 66 kV/6.9 kV 2 MVA prototype HTS power transformer [J]. Physica C: Superconductivity and Its Applications, 2005, 426/427/428/429/430/431: 1402-1407. [40]KIM S H, KIM W S, CHOI K D, et al. Characteristic tests of a 1 MVA single phase HTS transformer with concentrically arranged windings [J]. IEEE Transactions on Applied Superconductivity, 2005, 15(2): 2214-2217. [41]BERGER A, NOE M, KUDYMOW A. Test results of 60 kVA current limiting transformer with full recovery under load [J]. IEEE Transactions on Applied Superconductivity, 2011, 21(3): 1384-1387. [42]HELLMANN S, ABPLANALP M, HOFSTETTER L, et al. Manufacturing of a 1-MVA-class superconducting fault current limiting transformer with recovery-under-load capabilities [J]. IEEE Transactions on Applied Superconductivity, 2017, 27(4): 5500305. [43]GLASSON N, STAINES M, BUCKLEY R, et al. Development of a 1 MVA 3-phase superconducting transformer using YBCO roebel cable [J]. IEEE Transactions on Applied Superconductivity, 2011, 21(3): 1393-1396. [44]LI X, CHEN Q, SUN J, et al. Analysis of magnetic field and circulating current for HTS transformer windings [J]. IEEE Transactions on Applied Superconductivity, 2005, 15(3): 3808-3813. [45]JIN J, CHEN X. Development of HTS transformers [C]∥International Conference on Industrial Technology. Chengdu, China: IEEE, 2008: 1-6. [46]QIU Q, DAI S, WANG Z, et al. Winding design and electromagnetic analysis for a 1250-kVA HTS transformer [J]. IEEE Transactions on Applied Superconductivity, 2015, 25(1): 5500107. [47]DAI S, MA T, QIU Q, et al. Development of a 1250-kVA superconducting transformer and its de-monstration at the superconducting substation [J]. IEEE Transactions on Applied Superconductivity, 2016, 26(1): 5500107. [48]HU D, LI Z, HONG Z, et al. Development of a single-phase 330 kVA HTS transformer using GdBCO tapes [J]. Physica C: Superconductivity and Its Applications, 2017, 539: 8-12. [49]郑军.高温超导电机技术的研究现状与应用前景浅析[J]. 新材料产业, 2017(8): 60-65. ZHENG Jun. The research status and application prospect of high temperature superconductor motor technology [J]. Advanced Materials Industry, 2017(8): 60-65. [50]宋彭. 电枢超导型高温超导电机关键问题研究[D].北京:清华大学, 2016. SONG Peng. Study on key technical issues of a synchronous generator with HTS amrature windings [D]. Beijing: Tsinghua University, 2016. [51]白利锋, 张平祥.高温超导电机研究进展[J]. 低温物理学报, 2016, 38(5): 1-6. BAI Lifeng, ZHANG Pingxiang. The development of HTS motors [J]. Chinese Journal of Low Temperature Physics, 2016, 38(5): 1-6. [52]FRANK M, FRAUENHOFER J, VAN HASSELT P, et al. Long-term operational experience with first Siemens 400 kW HTS machine in diverse configurations [J]. IEEE Transactions on Applied Superconductivity, 2003, 13(2): 2120-2123. [53]GAMBLE B, SNITCHLER G, MACDONALD T. Full power test of a 36.5 MW HTS propulsion motor [J]. IEEE Transactions on Applied Superconductivity, 2011, 21(3): 1083-1088. [54]FRANK M, FRAUENHOFER J, VAN HASSELT P, et al. Long-term operational experience with first Siemens 400 kW HTS machine in diverse configurations [J]. IEEE Transactions on Applied Superconductivity, 2003, 13(2): 2120-2123. [55]许媛媛, 马光同, 邓自刚, 等. 低温和高温超导电动/发电机发展概述[J]. 低温物理学报, 2013, 35(1): 43-51. XU Yuanyuan, MA Guangtong, DENG Zigang, et al. A survey of the development of the low- and high-Tc superconducting motors/generators [J]. Chinese Journal of Low Temperature Physics, 2013, 35(1): 43-51. [56]刘翔. 采用第二代高温超导带材的高温超导电机研发项目顺利通过验收[EB/OL]. (2017-07-28) [2018-04-25]. http:∥www.iee.ac.cn/xwzx/kydt/201707/t20170728_4837701.html. LIU Xiang. The research and development project of the high-temperature superconducting motor with the second-generation high-temperature superconducting strip passed the acceptance smoothly [EB/OL]. (2017-07-28) [2018-04-25]. http:∥www.iee.ac.cn/xwzx/kydt/201707/t20170728_4837701.html. [57]NAKAMURA T, ITOH Y, YOSHIKAWA M, et al. Tremendous enhancement of torque density in HTS induction/synchronous machine for transportation equipments [J]. IEEE Transactions on Applied Superconductivity, 2015, 25(3): 5202304. [58]QU T, SONG P, YU X, et al. Development and testing of a 2.5 kW synchronous generator with a high temperature superconducting stator and permanent magnet rotor [J]. Superconductor Science and Technology, 2014, 27(4): 044026. [59]HUANG Z, ZHAO A, HUANG X, et al. Short-circuit fault simulations in an HTS wind generator with different mechanical conditions [J]. IEEE Transactions on Applied Superconductivity, 2018, 28(3): 5204606. [60]HELLINGER R, MNICH P. Linear motor-powered transportation: History, present status, and future outlook [J]. Proceedings of the IEEE, 2009, 97(11): 1892-1900. [61]SOTELO G G, DIAS D H N, DE OLIVEIRA R A H, et al. MagLev Cobra: Test facilities and operational experiments [J]. Journal of Physics Conference Series, 2014, 507: 032017. [62]DENG Z, WANG J, ZHENG J, et al. Performance advances of HTS Maglev vehicle system in three essential aspects [J]. IEEE Transactions on Applied Superconductivity, 2009, 19(3): 2137-2141. [63]WANG J, WANG S, ZHENG J. Recent development of high temperature superconducting Maglev system in China [J]. IEEE Transactions on Applied Superconductivity, 2009, 19(3): 2142-2147.
Options
Outlines

/