Expand
  • School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China

Abstract

Supercritical injection and combustion processes are prevalent in liquid rockets and hypersonic flight equipment. Under the critical state, the thermophysical and transport properties of the fluid are very sensitive to pressure and temperature, and the ideal state equation is no longer applicable. Based on the OpenFOAM open source program and by using the classical pressure implicit split operator (PISO) algorithm to couple the velocity and pressure, this paper presents a new computational fluid dynamics (CFD) solver for supercritical jet, which incorporates the Soave-Redlich-Kwong (SRK) real-fluid equation of state and takes into account the effect of the isothermal compression coefficient on the pressure equation. And the numerical validity of the model is verified against experiments of a shock tube and supercritical jet. The results show that the new model possesses good prediction accuracy and reproduces the experimental results well. The model can be further extended for applications to transcritical and supercritical spray and mixing under internal combustion engine conditions.

Cite this article

LI Liang,XIE Maozhao,JIA Ming,LIU Hongsheng . [J]. Journal of Shanghai Jiaotong University, 2018 , 52(9) : 1058 -1064 . DOI: 10.16183/j.cnki.jsjtu.2018.09.008

References

[1]YANG V. Modeling of supercritical vaporization, mixing, and combustion processes in liquid-fueled propulsion systems[J]. Proceedings of the Combustion Institute, 2008, 28(1): 925-942. [2]GIVLER S D, ABRAHAM J. Supercritical droplet vaporization and combustion studies[J]. Progress in Energy and Combustion Science, 1996, 22(1): 1-28. [3]OSCHWALD M, SMITH J J, BRANAM R, et al. Injection of fluids into supercritical environments[J]. Combust Science and Technology, 2006, 178(1/2/3): 49-100. [4]KIMA T, KIMA Y, KIMB S K. Numerical study of cryogenic liquid nitrogen jets at supercritical pressures[J]. Journal of Supercritical Fluids, 2011, 56 (2): 152-163. [5]BRANAM R, MAYER W. Characterization of cryogenic injection at supercritical pressure[J]. Journal of Propulsion Power, 2003, 19(3): 342-355. [6]SEGAL C, POLIKHOV S A. Subcritical to supercritical mixing[J]. Physics of Fluids, 2008, 20(5): 052101-1-7. [7]FALGOUT Z, RAHM M, WANG Z. Evidence for supercritical mixing layers in the ECN Spray A[J]. Proceedings of the Combustion Institute, 2014, 35(2): 1579-1586. [8]WENSING M, VOGEL T, GOTZ G. Transition of diesel spray to a supercritical state under engine conditions[J]. International Journal of Engine Research, 2015, 21(5): 227-235. [9]OEFELEIN J C, YANG V. Modeling high-pressured mixing and combustion processes in liquid rocket engines[J]. Journal of Propulsion and Power, 2012, 14(5): 843-857. [10]ZONG N, MENG H, HSIEH S Y, et al. A numerical study of cryogenic fluid injection and mixing under supercritical conditions[J]. Physics of Fluids, 2004, 16(12): 4248-4261. [11]DUKHIN S S, ZHUA C, DAVE R, et al. Dynamic interfacial tension near critical point of a solvent-antisolvent mixture and laminar jet stabilization[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 229(1/2/3): 181-199. [12]DAHMS R N, OEFELEIN J C. Non-equilibrium gas-liquid interface dynamics in high-pressure liquid injection systems[J]. Proceedings of the Combustion Institute, 2015, 35(4): 1587-1594. [13]PARK T S. LES and RANS simulations of cryogenic liquid nitrogen jets[J]. Journal of Supercritical Fluids, 2012, 72(12): 232-247. [14]李云清, 何鹏. 超临界环境下燃料液滴蒸发过程的计算研究[J]. 内燃机学报, 2008, 26(1): 55-61. LI Yunqing, HE Peng. Numerical investigation of fuel droplet evaporation in a supercritical environment[J]. Transactions of CSICE, 2008, 26(1): 55-61. [15]华益新, 王亚洲, 孟华. 超临界压力下正庚烷的湍流传热数值研究[J].航空学报, 2010, 31: 1324-1330. HUA Yixin, WANG Yazhou, MENG Hua. Numerical study on turbulent convective heat transfer with n-heptane under supercritical pressures[J]. Acta Aeronautica Et Astronautica Sinica, 2010, 31: 1324-1330. [16]范珍涔, 范玮. 流动参数对超临界喷射特性影响的数值模拟[J]. 航空学报, 2013, 34(5): 1018-1027. FAN Zhencen, FAN Wei. Numerical simulation on effects of flow parameters on supercritical injection characteristics[J]. Acta Aeronautica Et Astronautica Sinica, 2013, 34(5): 1018-1027. [17]解茂昭. 内燃机跨临界/超临界燃料喷雾混合过程的机理与模型[J].燃烧科学与技术, 2014, 20(1): 1-9. XIE Maozhao. Mechanism and modeling of transcritical/supercritical fuel spray and mixture formation in internal combustion engines[J]. Journal of Combustion Science and Technology, 2014, 20(1): 1-9. [18]KIM S K, CHOI H S, KIM Y. Thermodynamic modeling based on a generalized cubic equation of state for kerosene/LOx rocket combustion[J]. Combustion and Flame, 2012, 159(3): 1351-1365. [19]Thermodynamics Research Center (TRC), Texas A&M University, College Station. TRC databases for chemistry and engineering-catalogue [EB/OL]. [2017-04-20]. https:∥www.tamu.edu. [20]ZEBERGMIKKELSEN C K, CISNEROS S, STENBY E H. Viscosity modeling of light gases at supercritical conditions using the friction theory[J]. Industrial & Engineering Chemistry Research, 2001, 40(17): 3848-3854. [21]National Institute of Standards and Technology. NIST chemistry web book [EB/OL]. (2017-01-06) [2017-04-20]. http:∥webbook.nist.gov/chemistry/fluid. [22]BANUTIA D, HANNEMANN K. The absence of a dense potential core in supercritical injection: A thermal break-up mechanism[J]. Physics of Fluids, 2016, 28(3): 101-353. [23]BANUTI D T. Crossing the Widom-line―Supercri-tical pseudo-boiling[J]. Journal of Supercritical Fluids, 2015, 98: 12-16. [24]JARCZYK M, PFITZNER M. Large eddy simulation of supercritical nitrogen jets[C]∥50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Nashville, USA: AIAA, 2012.
Options
Outlines

/