Lateral Failure Analysis of Unbonded Flexible Risers Under Axial Compression Force

Expand
  • State Key Laboratory of Ocean Engineering; Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

Nonlinear finite element method is used to study the failure characters of flexible riser under axial compression force. The tensile armor layer, structural tape and outer sheath are modeled by solid elements. Material nonlinearity, geometrical large deformation, complex contact and friction are considered in this article. The effects of number of helix bands in armor layer, friction coefficient, thickness of outer sheath on the failure modes and axial compression force of flexible risers are studied. The results show that the failure process of all steel helix bands model is more complex than the simplified model which only contains partial helix bands. And the axial compression force exhibits a multiple peak phenomenon. Friction coefficient has a great influence on failure mode. It’s a lateral failure when the friction coefficient is small, otherwise a radial failure when the friction coefficient is large. The thickness of the outer sheath has limited influence on the maximum axial compression force of lateral failure.

Cite this article

LIU Xiaoyuan,XUE Hongxiang,TANG Wenyong . Lateral Failure Analysis of Unbonded Flexible Risers Under Axial Compression Force[J]. Journal of Shanghai Jiaotong University, 2018 , 52(9) : 1017 -1022 . DOI: 10.16183/j.cnki.jsjtu.2018.09.002

References

[1]邓燕飞, 杨建民, 李欣, 等. 波浪水池中畸形波生成的研究综述[J]. 船舶力学, 2016, 20(8): 1059-1070. DENG Yanfei, YANG Jianmin, LI Xin, et al. A review on the freak wave generation in the wave tank[J]. Journal of Ship Mechanics, 2016, 20(8): 1059-1070. [2]KHARIF C. Physical mechanisms of the rogue wave phenomenon[J]. European Journal of Mechanics—B/Fluids, 2003, 22(6): 603-634. [3]裴玉国. 畸形波的生成及基本特性研究[D]. 大连: 大连理工大学, 2007. PEI Yuguo. The generation of freak waves and its behaviors[D]. Dalian: Dalian University of Technology, 2007. [4]HU Z, TANG W, XUE H. A probability-based superposition model of freak wave simulation[J]. Applied Ocean Research, 2014, 47(9): 284-290. [5]ZAKHAROV V E. Stability of periodic waves of finite amplitude on the surface of a deep fluid[J]. Journal of Applied Mechanics & Technical Physics, 1968, 9(2): 190-194. [6]PEREGRINE D H. Water waves, nonlinear Schrdinger equations and their solutions[J]. Anziam Journal, 1983, 25(1): 16-43. [7]CHABCHOUB A, HOFFMANN N P, AKHMEDIEV N. Rogue wave observation in a water wave tank.[J]. Physical Review Letters, 2011, 106(20): 309-313. [8]PERI R, HOFFMANN N, CHABCHOUB A. Initial wave breaking dynamics of Peregrine-type rogue waves: A numerical and experimental study[J]. European Journal of Mechanics—B/Fluids, 2015, 49(12): 71-76. [9]HU Z, TANG W, XUE H, et al. Numerical study of Rogue waves as nonlinear Schrdinger breather solutions under finite water depth[J]. Wave Motion, 2015, 52: 81-90. [10]CLAUSS F, SCHMITTNER C E, STUTZ K. Freak wave impact on semisubmersibles-time-domain analysis of motions and forces[C]∥The Thirteenth International Offshore and Polar Engineering Conference. Honolulu, Hawaii, USA: [s.n.], 2003. [11]ZHAO X, YE Z, FU Y, et al. A CIP-based numerical simulation of freak wave impact on a floating body[J]. Ocean Engineering, 2014, 87(5): 50-63. [12]DENG Y, YANG J, ZHAO W, et al. Freak wave forces on a vertical cylinder[J]. Coastal Engineering, 2016, 114: 9-18. [13]LIN P. A fixed-grid model for simulation of a moving body in free surface flows[J]. Computers & Fluids, 2007, 36(3): 549-561. [14]丁仕风, 唐文勇, 张圣坤. 速度突变情况下液化天然气船液舱内晃荡问题的仿真[J]. 上海交通大学学报, 2008, 42(6): 919-923. DING Shifeng, TANG Wenyong, ZHANG Shengkun. Simulation of liquid sloshing in the cabin caused by liquefied natural gas ship’s variable speed[J]. Journal of Shanghai Jiao Tong University, 2008, 42(6): 919-923. [15]CHIANG C M. The applied dynamics of ccean surface waves[M]. [s.l.]: Wiley, 1983. [16]HU Z, TANG W, XUE H, et al. Numerical simulations using conserved wave absorption applied to Navier-Stokes equation model[J]. Coastal Engineering, 2015, 99: 15-25. [17]BAARHOLM R, FALTINSEN O M. Wave impact underneath horizontal decks[J]. Journal of Marine Science and Technology, 2004, 9(1): 1-13.
Options
Outlines

/