Semi-Analytical Solution of Limit Support Pressure on Shield Tunnel Face Subjected to Water Level Fluctuation

Expand
  • 1. Research Center of Coastal and Urban Geotechnical Engineering, MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou 310058, China; 2. Zhejiang Province Institute of Architectural Design and Research, Hangzhou 310008, China

Received date: 2017-10-24

Abstract

In order to study the influence of tides on shield tunnel excavation, by using the finite element software COMSOL, a three-dimensional numerical model is established to obtain the seepage field in front of the tunnel face. Phase delay and amplitude decay of seepage are found in the ground. The seepage force from the numerical results is applied to the “wedge-prism” limit equilibrium model, in order for the computation and analysis of the limit supporting pressure under the condition of water level fluctuation. Fluctuation of the limit supporting pressure is related to the ratio of the overburden thickness to the diameter of the tunnel, soil properties, boundary water level fluctuation, etc. With the increase of the ratio of the overburden thickness to the diameter of the tunnel and the decrease of the fluctuation period, the phase delay and amplitude decay of the limit supporting force are more notable. The seepage force on the tunnel face varies with time and the maximum value is smaller than that calculated in static water condition with the highest tidal level. The supporting force and tidal level reach the maximum value at different time.

Cite this article

YING Hongwei,SHEN Huawei,ZHANG Jinhong,ZHU Chengwei . Semi-Analytical Solution of Limit Support Pressure on Shield Tunnel Face Subjected to Water Level Fluctuation[J]. Journal of Shanghai Jiaotong University, 2018 , 52(8) : 982 -990 . DOI: 10.16183/j.cnki.jsjtu.2018.08.015

References

[1]SEIDENFUB T. Collapses in Tunnelling[D]. Stuttgart: Stuttgart University, 2006. [2]ANAGNOSTOU G, KOVARI K. Face stability conditions with earth-pressure-balanced shields[J]. Tunnelling and Underground Space Technology, 1996, 11(2): 165-173. [3]乔金丽, 张义同, 高健. 考虑渗流的多层土盾构隧道开挖面稳定性分析[J]. 岩土力学, 2010, 31(5): 80-85. QIAO Jinli, ZHANG Yitong, GAO Jian. Stability analysis of shield tunnel face in multilayer soil with seepage[J]. Rock and Soil Mechanics, 2010, 31(5): 80-85. [4]竺维彬, 鞠世建. 地铁盾构施工风险源及典型事故分析的研究[M]. 广州: 暨南大学出版社, 2009: 78-86. ZHU Weibin, JU Shijian. Research on risk sources and typical accidents in tunneling construction[M]. Guangzhou: Jinan University Press, 2009: 78-86. [5]高健, 张义同, 乔金丽. 渗透力对隧道开挖面稳定性影响分析[J]. 岩土工程学报, 2009, 31(10): 1547-1553. GAO Jian, ZHANG Yitong, QIAO Jinli. Face stability analysis of tunnels with consideration of seepage force[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(10): 1547-1553. [6]LEE I M, NAM S W, AHN J H. Effect of seepage forces on tunnel face stability[J]. Canadian Geotechnical Journal, 2003, 40(2): 342-350. [7]LECA E, DORMIEUX L. Upper and lower bound solutions for the face stability of shallow circular tunnels in frictional material[J]. Géotechnique, 1990, 40(4): 581-606. [8]刘维. 饱和成层土中盾构掘进面稳定理论性研究[D]. 杭州: 浙江大学建筑工程学院, 2013. LIU Wei. Research on tunnel face stability in saturated layered soil[D]. Hangzhou: College of Civil Engineering and Architecture, Zhejiang University, 2013. [9]王浩然, 黄茂松, 吕玺琳, 等. 考虑渗流影响的盾构隧道开挖面稳定上限分析[J]. 岩土工程学报, 2013, 35(9): 1696-1704. WANG Haoran, HUANG Maosong, L Xilin, et al. Upper-bound limit analysis of stability of shield tunnel face considering seepage[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(9): 1696-1704. [10]吕玺琳, 王浩然, 黄茂松. 盾构隧道开挖面稳定极限理论研究[J]. 岩土工程学报, 2011, 31(1): 57-62. L Xilin, WANG Haoran, HUANG Maosong. Limit theoretical study on face stability of shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2011, 31(1): 57-62. [11]BUHAN P D, CULVILLIER L, DORMIEUX L, et al. Face stability of shallow circular tunnels driven under the water table: A numerical analysis[J]. Interantional Journal for Numerical and Analytical Methods in Geomechanics, 1999, 23(1): 79-95. [12]陈仁朋, 尹鑫晟, 汤旅军, 等. 考虑渗流条件下开挖面失稳离心试验研究[J]. 岩土力学, 2005, 36(S1): 225-229. CHEN Renpeng, YIN Xinsheng, TANG Lüjun, et al. Centrifugal model tests of tunneling face failure under seepage flow[J]. Rock and Soil Mechanics, 2005, 36(S1): 225-229. [13]WANG K, DAVIS E E. Theory for propagation of tidally induced pore pressure variations in layered subseafloor formation[J]. Journal of Geophysical Research, 1996, 101(B5): 11483-11495. [14]CONTE E, TRONCONE A. Soil layer response to pore pressure variations at the boundary[J]. Géotechnique, 2008, 58(1): 37-44. [15]GUO H P, JIAO J J, LI H L. Groundwater response to tidal fluctuation in a two-zone aquifer[J]. Journal of Hydrology, 2010, 381(3): 364-371. [16]JENG D S, LIN Y S. Wave-induced pore pressure around a buried pipeline in Gibson Soil: Finite element analysis[J]. International Journal of Numerical and Analytical Methods in Geomechnics, 1999, 23(13): 1559-1578. [17]应宏伟, 章丽莎, 谢康和, 等. 坑外地下水位波动引起的基坑水土压力响应[J]. 浙江大学学报(工学版), 2014, 48(3): 492-497. YING Hongwei, ZHANG Lisha, XIE Kanghe, et al. Pore and earth pressure response to groundwater fluctuation out of foundation pit[J]. Journal of Zhejiang University (Engineering Science), 2014, 48(3): 492-497. [18]应宏伟, 聂文峰, 黄大中. 地下水位波动下基坑周围地基土的孔压响应半解析解[J]. 岩土工程学报, 2014, 36(6): 1012-1019. YING Hongwei, NIE Wenfeng, HUANG Dazhong. Semi-analytical solution of pore pressure response around excavations to groundwater level fluctuation[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1012-1019. [19]ZHANG L S, YING H W, XIE K H, et al. Effect of groundwater fluctuations on pore pressures and earth pressures on coastal excavation retaining walls[J]. Marine Georesources and Geotechnology, 2016, 34(8): 770-781. [20]林炳尧. 钱塘江涌潮的特性[M]. 北京: 海洋出版社, 2008. LIN Bingyao. Characteristics of the Qiantangjiang River tidal bore[M]. Beijing: China Ocean Press, 2008. [21]林存刚. 盾构掘进地面隆陷及潮汐作用江底盾构隧道性状研究[D]. 杭州: 浙江大学建筑工程学院, 2014. LIN Cungang. Research on shield tunnelling-induced ground surface heave and subsidence and behavior of underwater shield-driven tunnels subject to tidal bores[D]. Hangzhou: College of Civil Engineering and Architecture, Zhejiang University, 2014. [22]秦建设. 盾构施工开挖面变形与破坏机理研究[D]. 南京: 河海大学土木工程学院, 2005. QIN Jianshe. Study on face deformation and collapse of earth pressure shield tunnel[D]. Nanjing: College of Civil Engineering, Hohai University, 2005. [23]PERAZZELLI P, LEONE T, ANAGNOSTOU G. Tunnel face stability under seepage flow conditions[J]. Tunnelling and Underground Space Technology, 2014, 43: 459-469.
Options
Outlines

/