Crystal Plasticity Model Apply to the Error Analysis of Microcompression Test

Expand
  • 1. School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou 450001, China; 2. National Center for International Joint Research of Micro-nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China; 3. State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an 710049, China

Online published: 2018-07-28

Abstract

Anisotropic crystal plasticity model based on dislocation density is employed to investigate the mechanical response of nickel single crystalline micropillar, and is further verified by comparing its predictions with existing experimental data. Following that, we study nickel single crystalline micropillar with orientation having [123], and investigate the influence of common experimental errors of crystal orientations, friction, misalignment and taper angle, on the mechanical testing results. It is found that for the single-slip orientated micropillar, slight variation of crystal orientation leads to a transition from single-slip behavior to multi-slip deformation. Friction-affected lateral constraint shows a dramatic effect on the microcrystal strain hardening behavior. Small misalignments give rise to a decrease of elastic modulus, and change the prime slip direction in significant ways. The taper micropillar shows much smaller yield stress than no taper pillars do.

Cite this article

SHAO Jiji,ZHANG Xu,MIAO Tongchen,SHANG Fulin . Crystal Plasticity Model Apply to the Error Analysis of Microcompression Test[J]. Journal of Shanghai Jiaotong University, 2018 , 52(7) : 860 -866 . DOI: 10.16183/j.cnki.jsjtu.2018.07.015

References

[1]庄茁, 崔一南, 高原, 等. 亚微米尺度晶体反常规塑性行为的离散位错研究进展[J]. 力学进展, 2011, 41(6): 647-667. ZHUANG Zhuo, CUI Yinan, GAO Yuan, et al. Advances in discrete dislocation mechanism on sub-micro crystal atypical plasticity[J]. Advances In Mechanics, 2011, 41(6): 647-667. [2]UCHIC M D, DIMIDUK D M, FLORANDO J N, et al. Sample dimensions influence strength and crystal plasticity[J]. Science, 2004, 305: 986-989. [3]田琳, 付琴琴, 单智伟. 聚焦离子束在微纳尺度材料力学性能研究中的应用[J]. 中国材料进展, 2013, 32(12): 706-715. TIAN Lin, FU Qinqin, SHAN Zhiwei. Applications of focused ion beam in the study on mechanical pro-perties of micro/nanomaterials[J]. Materials China, 2013, 32(12): 706-715. [4]UCHIC M D, DIMIDUK D M. A methodology to investigate size scale effects in crystalline plasticity using uniaxial compression testing[J]. Materials Science and Engineering: A, 2005, 400: 268-278. [5]SPARKS G, PHANI P S, HANGEN U, et al. Spatiotemporal slip dynamics during deformation of gold micro-crystals[J]. Acta Materialia, 2017, 122: 109-119. [6]KONDORI B, NEEDLEMAN A, BENZERGA A A. Discrete dislocation simulations of compression of tapered micropillars[J]. Journal of the Mechanics and Physics of Solids, 2017, 101: 223-234. [7]LEE E H. Elastic-plastic deformation at finite strains[J]. Journal of Applied Mechanics, 1969, 36(1): 1-6. [8]PEIRCE D, ASARO R J, NEEDLEMAN A. Material rate dependence and localized deformation in cry-stalline solids[J]. Acta Metallurgica, 1983, 31(12): 1951-1976. [9]HUTCHINON J W. Bounds and self-consistent estimates for creep of polycrystalline materials[J]. Proceedings of the Royal Society of London, Series A (Mathematical and Physical Sciences), 1976, 348: 101-127. [10]HARDER J. A crystallographic model for the study of local deformation processes in polycrystals[J]. International Journal of Plasticity, 1999, 15(6): 605-624. [11]叶诚辉, 魏啸, 陆皓. 基于位错密度的晶体塑性有限元方法的数值模拟及参数标定[J]. 材料导报, 2016, 30(4): 132-137. YE Chenghui, WEI Xiao, LU Hao. Numerical simulation of crystal plasticity finite element method based on dislocation density and parameter calibration[J]. Materials Review, 2016, 30(4): 132-137. [12]DEVINCRE B, HOC T, KUBIN L. Dislocation mean free paths and strain hardening of crystals[J]. Science, 2008, 320: 1745-1748. [13]DIMIDUK D M, UCHIC M D, PARTHASARATHY T A. Size-affected single-slip behavior of pure nickel microcrystals[J]. Acta Materialia, 2005, 53(15): 4065-4077. [14]ZHANG X, SHANG F. A continuum model for intermittent deformation of single crystal micropillars[J]. International Journal of Solids and Structures, 2014, 51(10): 1859-1871. [15]DIMIDUK D M, WOODWARD C, LESAR R, et al. Scale-free intermittent flow in crystal plasticity[J]. Science, 2006, 312: 1188-1190. [16]JUNG J H, NA Y S, CHO K M, et al. Microcompression behaviors of single crystals simulated by crystal plasticity finite element method[J]. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 2015, 46A(11): 4834-4840. [17]SHADE P A, WHEELER R, CHOI Y S, et al. A combined experimental and simulation study to exa-mine lateral constraint effects on microcompression of single-slip oriented single crystals[J]. Acta Materialia, 2009, 57(15): 4580-4587. [18]KORTE S, RITTER M, JIAO C, et al. Three-dimensional electron backscattered diffraction analysis of deformation in MgO micropillars[J]. Acta Materialia, 2011, 59(19): 7241-7254. [19]SOLER R, MOLINA-ALDAREGUIA J M, SEGURADO J, et al. Micropillar compression of LiF [111] single crystals: Effect of size, ion irradiation and misorientation[J]. International Journal of Plasticity, 2012, 36: 50-63. [20]ZHANG H, SCHUSTER B E, WEI Q, et al. The design of accurate micro-compression experiments[J]. Scripta Materialia, 2006, 54(2): 181-186. [21]UCHIC M D, SHADE P A, DIMIDUK D M. Plasticity of micrometer-scale single crystals in compression[J]. Annual Review of Materials Research, 2009, 39: 361-386. [22]SHAN Z W, MISHRA R K, ASIF S A S, et al. Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals[J]. Nature Materials, 2007, 7(2): 115-119. [23]OUYANG C, LI Z, HUANG M, et al. Combined influences of micro-pillar geometry and substrate constraint on microplastic behavior of compressed single-crystal micro-pillar: Two-dimensional discrete dislocation dynamics modeling[J]. Materials Science and Engineering: A, 2009, 526(1/2): 235-243. [24]GAO Y, LIU Z L, YOU X C, et al. A hybrid multiscale computational framework of crystal plasticity at submicron scales[J]. Computational Materials Science, 2010, 49(3): 672-681. [25]LEE J A, SEOK M Y, ZHAO Y K, et al. Statistical analysis of the size-and rate-dependence of yield and plastic flow in nanocrystalline copper pillars[J]. Acta Materialia, 2017, 127: 332-340.
Options
Outlines

/